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Cláudio T. Silva AT&T Labs-Research



Abstract

Visibility determination, the process of deciding what surfaces can be seen
from a certain point, is one of the fundamental problems in computer graphics.
Its importance has long been recognized, and in network-based graphics, virtual
environments, shadow determination, global illumination, culling, and interactive
walkthroughs, it has become a critical issue. This course reviews fundamental is-
sues, current problems, and unresolved solutions, and presents an in-depth study of
the visibility algorithms developed in recent years. Its goal is to provide students
and graphics professionals (such as game developers) with effective techniques for
visibility culling.

Schedule

8:30 – 8:40 Introduction to the course Cohen-Or
8:40 – 9:40 Analytical Visibility Durand
9:40 – 10:00 Hierarchical techniques for culling Chrysanthou
10:00 – 10:15 Coffee break
10:15 – 10:40 Hierarchical techniques for culling (cont) Chrysanthou
10:40 – 12:00 Object Space techniques Silva
12:00 – 1:30 Lunch break
1:30 – 2:15 Image Space Methods Greene
2:15 – 3:00 Viewspace part. and from-region visibility Cohen-Or
3:00 – 3:15 Coffee break
3:15 – 4:20 Area Visibility Koltun
4:20 – 5:00 Hardware-Assisted Occlusion-Culling Greene
5:00 Final Questions and Discussion
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London, UK. He received his BSc in Computer Science and Statistics (1990, 1st Class Honours)
and his PhD in Computer Graphics (1996) from Queen Mary and Westfield College. During the
period of 1996-98 he worked as a research fellow on the COVEN (Collaborative Virtual
ENvironments) ACTS project where he concentrated on real-time rendering of large scale virtual
environments. Since then he is the principle investigator of a number of funded projects dealing
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Massachusetts Institute of Technology
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Fredo Durand is a postdoctoral associate in the Lab for Computer Science at MIT. He received his
Ph.D. in Computer Science from Grenoble University (France) in 1999 with honors. His Ph.D.
work on visibility lead to 2 SIGGRAPH articles and other publications in ACM ToG and EGWR.
His thesis contains a comprehensive 150 page multidisciplinary survey on visibility issues in
computer graphics, computer vision, robotics and computational geometry. He has recently been
invited to give the introductory talk at the Workshop on Visibility held in Corsica. His research
interest include visibility, both from a theoretical and practical point of view, image-based
modeling and editing, visual perception, texture synthesis, and non photorealistic rendering.
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computer graphics and computational geometry. He is directly involved with real-time computer
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From 1996 to 2000, Ned developed occlusion-culling methods for graphics hardware and
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graphics researcher in the Advanced Technology Group at Apple Computer where his work
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research staff at the NYIT Computer Graphics Lab from 1980 to 1989, where he conducted
research, developed animation software, and contributed to pioneering animation projects. He
holds a Masters Degree in computer science from the Courant Institute at New York University
and a PhD in computer science from the University of California at Santa Cruz. Over the years
Ned has been a frequent contributor to the Siggraph technical program and Electronic Theater.
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Department at AT&T Labs-Research, and an adjunct assistant professor at the State University of
New York at Stony Brook. His current research is on architectures and algorithms for building
scalable displays, rendering techniques for large datasets, 3D scanning, and algorithms for
graphics hardware. Before joining AT&T, Claudio was a Research Staff Member at the graphics
group at IBM T. J. Watson Research Center. Claudio has a Bachelor’s degree in mathematics
from the Federal University of Ceara (Brazil), and MS and PhD degrees in computer science from
the State University of New York at Stony Brook. While a student, and later as an NSF post-doc,
he worked at Sandia National Labs, where he developed large-scale scientific visualization
algorithms and tools for handling massive datasets. His main research interests are in graphics,
visualization, applied computational geometry, and high-performance computing. Claudio has
published over 30 papers in international conferences and journals, and presented courses at ACM
SIGGRAPH, Eurographics, and IEEE Visualization conferences. He is a member of the ACM,
Eurographics, and IEEE.
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Abstract

The last few yearshave witnessedtremendousgrowth in the
complexity of computergraphicsmodelsaswell asnetwork-
basedcomputing. Although significant progresshas been
made in the handling of specific types of large polygonal
datasets(i.e., architecturalmodels)on singlegraphicswork-
stations,only recentlyhaveresearchersstartedto turn theirat-
tentionto moregeneralsolutions,whichnow includenetwork-
basedgraphicsand virtual environments. The situation is
likely to worsenin the futuresince,dueto technologiessuch
as3D scanning,graphicalmodelsarebecomingincreasingly
complex. One of the most effective ways of managingthe
complexity of virtual environmentsis throughtheapplication
of smartvisibility methods.

Visibility determination,theprocessof decidingwhatsur-
facescanbeseenfrom acertainpoint, is oneof thefundamen-
tal problemsin computergraphics.It is requirednot only for
the correctdisplayof imagesbut alsofor suchdiverseappli-
cationsasshadow determination,global illumination, culling
andinteractive walkthrough.Theimportanceof visibility has
long beenrecognized,and much researchhasbeendonein
this areain the last threedecades.The proliferationof solu-
tions,however, hasmadeit difficult for thenon-expert to deal
with this effectively. Meanwhile,in network-basedgraphics
andvirtual environments,visibility hasbecomea critical is-
sue,presentingnew problemsthatneedto beaddressed.

In this survey we review the fundamentalissuesin visibil-
ity andconductanoverview of thework performedin recent
years.

1 Introduction

Thetermvisibility is very broadandhasmany meaningsand
applicationsin variousfields of computerscience.Here,we
focuson visibility algorithmsin supportof virtual reality ap-
plications. For a moregeneralsurvey see[23] (alsoappears
in [14]). For thoseinterestedin the computationalgeome-
try literature,see[21, 20, 22]. Zhang’s thesis[80] contains
a short survey of computergraphicsvisibility work. Moller
andHaines[50, Chapter7] cover several aspectsof visibility
culling.

We dealprimarily with algorithmsrelatedto walkthrough
applicationswherewe assumethata sceneconsistsof a very
largenumberof primitives.Moreover, weassumethatmodels�
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keepgetting larger andmorecomplex and that userappetite
will neverbesatisfiedwith thecomputationalpoweravailable.
Forverycomplex modelswecanusuallydobetterwith asmart
renderingalgorithmthanwith fastermachines.

Oneof themostinterestingvisibility problemsin this con-
text is the oneof selectinga setof polygonsfrom the model
that is visible from a given viewpoint. More formally (after
[21]), let the scene,

�
, be composedof modelingprimitives

(e.g., triangles)
�����	�

0 
 � 1 
 . . . ,
�

n � , anda viewing frustum
defininganeye position,a view direction,anda field of view.
The visibility problemencompassesfinding the visible frag-
mentswithin thescene,thatis, connectedto theeyepointby a
line segmentthatmeetstheclosureof nootherprimitive. One
of the obstaclesto solving the visibility problemis its com-
plexity. For a scenewith n

�
O �� �  � primitives,thecomplex-

ity of the setof visible fragmentsmight be ashigh asO � n2 �
(i.e.,quadraticin thenumberof primitivesin theinput).

What makes visibility an interestingproblem is that for
largescenes,thenumberof visible fragmentsis usuallymuch
smallerthanthetotal sizeof theinput. For example,in a typi-
cal urbanscenes,onecanseeonly a very smallportionof the
entiremodel,regardlessof one’s location.Suchscenesaresaid
to bedenselyoccluded, in thesensethatfrom any givenview-
point, only a small fractionof thesceneis visible [15]. Other
examplesinclude indoor scenes,wherethe walls of a room
occludemostof thescene,andin fact,from any viewpoint in-
side the room, onemay only seethe detailsof that room or
thosevisible throughtheportals, seeFigure 1. A differentex-
ampleis a copying machine,shown in Figure 2, wherefrom
the outsideonecanonly seeits externalparts. Although in-
tuitive, this information is not availableaspart of the model
representation,andonly a non-trivial algorithmcandetermine
it automatically. Notethatoneof its doorsmightbeopen.

Visibility is notaneasyproblem,sinceasmallchangein the
viewpointmightcauselargechangesin thevisibility. It means
that solving the problemat onepoint doesnot help muchin
solving it at a nearbypoint. An exampleof this canbe seen
in Figure 3. The aspectgraph, describedin Section 2, and
the visibility complex (describedin [23]) shedslight on the
complex characteristicsof visibility.

Therestof this paperis organizedasfollows. We first give
a shortdescriptionof theaspectgraph,which is a fundamen-
tal conceptin visibility, in Section2. Then,we briefly review
some3D graphicshardwarefeatureswhich areimportantfor
visibility culling (Section 4). Next, we presenta taxonomy
of visibility culling algorithmsin Section 5. This introduc-
tory part is thenfollowed by a moredetaileddescriptionand
analysisof recentvisibility-culling algorithms.



(a) (b)

Figure1: With indoorscenesoftenonly a very smallpartof thegeometryis visible from any givenviewpoint. Courtesyof Craig
Gotsman,Technion.

(a)
(b)

Figure2: A copying machine;only a fractionof thegeometryis visible from theoutside.Courtesyof CraigGotsman,Technion.

(a) (b)

Figure3: A smallchangein theviewing positioncancauselargechangesin thevisibility.



(a) (b) (c)

Figure4: Two differentview directionsof anobjecthave the
sameaspectif andonly if thecorrespondingImageStructure
Graphsareisomorphic. Note that (a) and(b) have the same
aspect,which is differentto (c).

2 The aspect graph

When dealingwith visibility, it is useful to consideran im-
portanttheoreticalconceptcalledtheaspectgraph[26]. Let us
look at thetwo isomorphicgraphsin Figure 4. They areapro-
jectionof a 3D object;however, we treatthemas2D entities.
First,let usdefinetheImageStructureGraph(ISG)asaplanar
graph,definedby theoutlinesof animagecreatedby project-
ing a polyhedralobjectin a certainview direction. Thentwo
differentview directionsof anobjecthave thesameaspectif
andonly if their correspondingISGsareisomorphic.Now we
can partition the viewspaceinto maximal connectedregions
in which the viewpointshave the sameview or aspect.This
partition is theVSP - thevisibility spacepartition, wherethe
boundaryof aVSPregion is calledavisualeventasit marksa
changein visibility (seeFigure 5).

The term, aspectgraph,refersto the graphcreatedby as-
signinga vertex to eachregion of the VSP, wherethe edges
connectadjacentregions.

Figure5: 2 polygons- 12aspectregions.

Figures5 and 6 show a visibility spacepartition in 2D,
which is createdby just two andthreesegments(the2D coun-
terpartsof polygons),respectively. Onecanobserve that the
numberof aspectregionsis alreadylarge,andin fact,canbe
shown to grow quiterapidly.

Plantingaand Dyer [57] discussaspectgraphsand their
worst-casecomplexity, including algorithms for efficiently
computingaspectgraphs. The worst complexity of aspect
graphsis quitehigh, andin threedimensions,canbeaslarge
asO � n9 � . For a typicalnumberof segments(saytensof thou-
sands),in termsof spaceandtime it turnsout thatcomputing
the aspectgraphis computationallyimpractical. (Plantinga

Figure6: 3 polygons- “many” aspectregions.

[58] proposesanearlyconservative visibility algorithmbased
onhis aspectgraphwork.)

Figure7: Differentaspectregionscanhave equalsetsof visi-
blepolygons.

However, as can be seenin Figure7, different aspectre-
gionscanhaveequalsetsof visiblepolygons.Thismeansthat
therearefar fewer differentregionsof differentvisibility sets
thandifferentaspects.

Looking onceagainat the aspectpartition of the two seg-
mentsin Figure 8, we can treatoneasan occluderand the
otherastheoccludee,definingtheirendpointconnectinglines
assupportinglinesandseparating lines. Theselinespartition
thespaceinto threeregions:(i) theregion from which nopor-
tion of theoccludeeis visible, (ii) theregion from which only
a portion of the occludeeis visible, and(iii) the region from
which theoccluderdoesnot occludeany partof theoccludee
[17].
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Separating

Supporting

T - occludee
A - occluder

T is not occluded from region 1
T is partially occluded from region 2
T is fully occluded from region 3

Figure8: Supportingandseparatingplanes.

The3D visibility complex [23] is anotherway of describ-
ing andstudyingthevisibility of 3D spaceby a dualspaceof
3D lines,in which all thevisibility eventsaredescribed.This
structureis global, spatially coherentandcomplete,sinceit
encodesall thevisibility relationsin 3D. It allowsefficientvis-
ibility computations,suchasview extraction,computationof
theaspectgraph,discontinuitymeshingandform-factorcom-
putation.



3 Hidden-surface removal methods

As mentionedin theintroduction,oneof thefundamentalvis-
ibility problemsin computergraphicsis thedeterminationof
thevisible partsof thescene,theso-calledhidden-surfacere-
moval (HSR)(alsoknown asvisible-surfacedetermination)al-
gorithms.Assumingthesceneis composedof andrepresented
by triangles,thesealgorithmsnotonly definethesetof visible
triangles,but alsotheexactportionof eachvisibletrianglethat
hasto bedrawn into theimage.

An early classificationwas proposedby Sutherlandet al.
[69]. Later it was reviewed in [28] and also in the compu-
tational geometryliterature[22]. The HSR methodscan be
broadlyclassifiedinto threegroups:objectprecisionmethods,
imageprecisionmethodsandhybrid methods.Objectpreci-
sion methodscompareobjectsto decideexactly which parts
of eachoneis visible in the image.Oneof thefirst examples
of this classwaspresentedby WeilerandAtherton[74]. They
useda generalclipping methodto partition polygonswhich
were further away from the viewpoint using the boundaries
of thosecloser, discardingtheregionswherethey overlapped.
Objectprecisionalgorithmscanbeconsideredasacontinuous
solution(to theextentthatmachineprecisionallows)but often
suffer from scalabilityproblemsasthesizeof theenvironment
grows,andaredifficult to implementrobustly.

Imageprecisionalgorithmson the other handoperateon
the discreterepresentationof the image. The overall idea is
to producea solutionat the resolutionof the requiredimage
by determiningthevisible objectat eachpixel. Raycastingis
oneexampleof thisclass[3]. Otherexamplesarethescan-line
methods[9, 73], variationsof whicharepopularin gamesand
flight simulators,andthez-buffer [10] whoseimplementation
in hardware hasmadeit the de-facto standardHSR method
today.

Finally, in thethird class,arehybrid methodsthatcombine
objectandimageprecisionoperations.Of mostinterestarethe
so-calledlist-priority algorithms. Their underlyingideais to
quickly determinea partialorderlist of all polygonssuchthat
for any givenpair p, q, if p canoccludesomepartof q, thenp
comesearlierin the list. In otherwords,if q is after p in the
list, q cannotoccludep. Thenduring rendering,the ordered
polygonsaredrawn back-to-front,thusoccludingpolygonsare
correctlydrawn into theimage,coveringonly thosepartsthat
areoccluded.Someof theearlymethodswerethoseof Schu-
macker et al. [61] andNewell et al. [54] andlater Fuchset
al.’s BSPtrees[29]. Oneof theadditionalfeaturesof the list-
priority techniquesis thatthey areableto correctlyhandlethe
renderingof transparentobjects.Althoughthemethodswere
originally designedfor depthorderingof individual polygons,
someof their ideashave beenusedin occlusionmethods(i.e.,
[34]).

4 3D graphics hardware

In this section,we briefly review somecommonfeaturesof
modern3D graphicshardwarewhich arehelpful in visibility
calculations.

We do not cover theimportanttopicof efficient useof spe-
cific graphicshardware,in particular, theoptimizationof spe-
cific applicationsto specifichardware. A goodstartingpoint
is the text by Moeller andHaines[50]. The interestedreader
shouldalsoconsultthe OpenGLtutorialsgiven every yearat
Siggraph.

Hardware featuresfor specific visibility calculationsare
usuallybare-bones,becauseof theneedfor graphicshardware
to bestreamlinedandverysimple.Mostoften,by carefulanal-
ysisof thehardware,it is possibleto combineasoftwaresolu-
tion whichexploits thebasichardwarefunctionality, but at the
sametimealsoimprovesit considerably.

4.1 Graphics pipeline

Thegraphicspipelineis thetermusedfor thepatha particular
primitivetakesin thegraphicshardwarefrom thetimetheuser
definesit in 3D to the time it actuallycontributesto thecolor
of a particularpixel on thescreen.At a very high level, given
a primitive, it mustundergo several simple tasksbeforeit is
drawn on thescreen.

Often,suchasin theOpenGLgraphicspipeline,a triangle
primitive is first transformedfrom its local coordinateframe
to a world coordinateframe; then it is transformedagainto
a normalizedcoordinateframe,whereit is clipped to fit the
view volume. At this point, a division by w is performedto
obtain non-homogeneousnormalizedcoordinates,which are
thennormalizedagainto be in screen-space.Dependingon a
setof user-definedstateflags,thehardwarecanrejecttheprim-
itivebased(amongotherthings)onthedirectionof its normal.
This is calledback-faceculling, andis a very primitive form
of visibility culling.

Oncea primitive haspassedall thesephases,therasteriza-
tion phasecanstart. It is herethat thecolors(andotherprop-
erties)of eachpixel arecomputed.During rasterization,we
usuallyreferto theprimitivesas“fragments”.Moderngraph-
icsarchitectureshaveseveralper-fragmentoperationsthatcan
beperformedoneachfragmentasthey aregenerated.

As fragmentsare computed, they pass through further
processing,and the hardware will incrementallyfill several
buffers in orderto computethe image. The actualimagewe
seeon thescreenis only oneof thesebuffers: thecolorbuffer.
Otherbuffers include the stencil buffer and the depth(or z-
) buffer. Thereare other buffers, suchas the accumulation
buffer, etc.,but wedonotusethemin therestof thispaper. In
OpenGL,updatesto thedifferentbuffers canbetoggledby a
setof functioncalls,e.g. glEnable(GL DEPTHTEST) .

Oneview of the OpenGLbuffers is asa simpleprocessor
with little memory(justa few bytes),anda limited instruction
set.Recently, techniquesfor performinggeneralcomputations
using the OpenGLpipeline have beenproposed. Two such
examplesarePeercy etal. [56] andTrendallandStewart [71].

4.2 Stencil buffer

Thestencilbuffer is composedof a small setof bits (usually
more than 4) that can be usedto control which areasof the
otherbuffers, )textite.g. color buffer), arecurrentlyactive for
drawing. A commonuseof thestencilbuffer is to draw apiece
of staticgeometryonce(thecockpitof anairplane),andthen
masktheareasothatno furtherchangescanbemadeto those
pixels.

But thestencilbuffer is actuallymuchmoreflexible, since
it is possibleto changethe valueof the pixels on the stencil
buffer dependingon the outcomeof the testperformed. For
instance,averyusefulcomputationthatusesthestencilbuffer
is to computethe“depth-complexity” of ascene.For this,one
cansimplyprogramthestencilbuffer asfollows:

glStencilFunc(GL_ALWAYS, ˜0, ˜0);



(a) (b)

Figure9: Depthcomplexity of thesceneasrenderedby (a) view-frustumculling, (b) a conservative occlusionculling technique.
Thedepthcomplexity rangesfrom light green(low) to bright red(high). If theocclusion-cullingalgorithmwere“exact”, (b) would
becompletelygreen.

glStencilOp(GL_KEEP, GL_INCR, GL_INCR);

whichessentiallymeansthestencilbuffer will getincremented
every timeapixel is projectedontoit. Figure 9 showsavisual
representationof this. The stencilbuffer is useful in several
typesof visibility computations,suchasreal-timeCSGcalcu-
lations[31], occludercalculations[25], andsoon.

4.3 Z-buffer

Thez-buffer is similar to thestencilbuffer, but servesa more
intuitive purpose.Basically, the z-buffer savesits “depth” at
eachpixel. Theideais thatif anew primitive is obscuredby a
previously drawn primitive, thez-buffer canbeusedto reject
theupdate.Thez-buffer consistsof anumberof bitsperpixel,
usually24bits in mostcurrentarchitectures.

The z-buffer providesa brute-forceapproachto the prob-
lem of computingthe visible surfaces. Just renderingeach
primitive,andthez-buffer will take careof notdrawing in the
color buffer of thoseprimitives that are not visible. The z-
buffer providesagreatfunctionality, since(on fully hardware-
acceleratedarchitectures)it is ableto solve thevisibility prob-
lem(upto screen-spaceresolution)of asetof primitivesin the
time it would take to scan-convert themall.

As avisibility algorithm,thez-buffer hasa few drawbacks.
Onedrawbackis thateachpixel in thez-buffer is touched(po-
tentially)asoftenasits depthcomplexity, althoughonesimply
needsthe top surfaceof eachpixel. Becauseof this poten-
tially excessiveoverdrawing alot of computationandmemory
bandwidthis wasted.A visibility pre-filteringtechnique,such
asback-faceculling, canbeusedto improve thespeedof ren-
deringwith a z-buffer.

There have beenseveral proposalsfor improving the z-
buffer, suchasthe hierarchicalz-buffer [35] (seeSection7.1
andrelatedtechniques).A simple,yeteffectivehardwaretech-
niquefor improving theperformanceof thevisibility compu-
tationswith a z-buffer hasbeenproposedby Scottet al. [62],
seeSection7.5.

5 Visibility culling algorithms

Visibility algorithmshave recentlyregainedattentionin com-
putergraphicsasatool for handlinglargeandcomplex scenes,
whichconsistof millions of polygons.In theearly1970shid-
densurfaceremoval (HSR) algorithms(seeSection3) were
developedto solve the fundamentalproblemof determining
the visible portionsof the polygonsin the image. In light of
theZ-buffer beingwidely available,andexactvisibility com-
putationsbeingpotentiallytoocostly, oneideais to usetheZ-
buffer asa filter, anddesignalgorithmsthat lower theamount
of overdraw by computinganapproximationof thevisibleset.
In morepreciseterms,definethevisible set ��� �

to be the
subsetof primitiveswhich contribute to at leastonepixel of
thescreen.

In computergraphics,visibility-culling researchmainly fo-
cuseson algorithmsfor computing(hopefully tight) estima-
tionsof � , thenusingtheZ-buffer to obtaincorrectimages.

5.1 View frustum and back-face culling

The simplest examplesof visibility culling algorithms are
back-faceand view-frustum culling [28]. Back-faceculling
algorithmsavoid renderinggeometrythatfacesaway from the
viewer, while viewing-frustumculling algorithmsavoid ren-
deringgeometrythat is outsidethe viewing frustum. These
culling operationscanbe left to the graphicshardwarewith-
out affecting thefinal image. However, that comesat a great
costsincethepolygonswill beprocessedthroughmostof the
pipelineonly to berejectedjustbeforescanconverting.

Back-facingpolygonscanbe identifiedwith a simpledot
product,sincetheir normalpointsaway from theview-point.
On averagewe expect half the scenepolygonsto be back-
facing, so ideally we would like to avoid processingall of
them. Kumaret al. [45] presenta methodwhich hasa sub-
linear numberof polygons. The input model is partitioned
into ahierarchyof clustersbasedonbothsimilarity of orienta-
tion andphysicalproximity of thepolygons.Theviewspaceis
alsopartitionedwith respectto theclusters.At eachframethe
viewpoint position is hierarchicallycomparedwith the clus-
tersin orderto quickly rejectthebulk of theback-facingpoly-
gons.Frame-to-framecoherenceis furtherusedto accelerate
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Figure 10: Three typesof visibility culling techniques:(i)
view frustumculling, (ii) back-faceculling and(iii) occlusion
culling.

theprocess.
View frustumculling is usuallyperformedusingeitherahi-

erarchyof boundingvolumesor a spatialdatastructure,such
asa KD-tree,octreeor BSPtree. This is hierarchicallycom-
paredwith theview frustumto quickly rejectpartsof thescene
thatareclearlyoutside[13].

Slater et al. [65] presentan alternative approachwhich
makes heavy useof frame-to-framecoherence.It relies on
the fact that the setsof objectsthat are completelyoutside,
completelyinside,or intersectthe boundaryof the view vol-
ume, changeslowly over time. This coherenceis exploited
to developanalgorithmthatquickly identifiesthesethreesets
of objects,andpartitionsthosecompletelyoutsideinto sub-
setswhichareprobabilisticallysampledaccordingto theirdis-
tancefrom theview volume.A statisticalobjectrepresentation
schemeis usedto classifyobjectsinto thevarioussets.Theal-
gorithmis implementedin thecontext of a BSPtree.

Very recently, Assarssonand Möller [4] proposeda new
view-frustum culling technique. Their work is basedon
shrinking the view frustum to enable the use of point-
containmentqueriesto efficiently acceptor rejectprimitives.

5.2 Occlusion culling

Eventhoughbothof theabove techniquesareveryeffective in
culling geometry, morecomplex techniquescanleadto sub-
stantialimprovementsin renderingtime. ThetermOcclusion
culling is usedfor visibility techniquesthat avoid rendering
primitivesthat areoccludedby someotherpart of the scene.
This techniqueis globalasit involvesinterrelationshipamong
polygonsand is thus far more complex than local visibility
techniques.Thethreekindsof visibility culling canbeseenin
Figure 10.

It is important to note the differencesbetweenocclusion
culling andHSR. HSR algorithmsdeterminewhich portions
of thesceneneedto bedrawn on thescreen.Thesealgorithms
eventuallyremove theoccludedparts,but in doingso,areex-
pensive, sincethey usuallyhave to touchall theprimitivesin�

(andactuallyhave a runningtime that is superlinearin the
sizeof

�
). Occlusion-cullingtechniquesaresupposedto be

outputsensitive, that is, their runningtime shouldbe propor-
tional to the sizeof � , which for mostcomplex scenes,is a
smallsubset.

Let usdefinethe following notationfor a sceneconsisting
of polygons.� The exact visibility set, � , is the set of all polygons

which areat leastpartially visible, andonly thesepoly-
gons.

� The approximatevisibility set, � , is a set that includes
most of the visible polygonsplus maybesomehidden
ones.

� Theconservativevisibility set, � , is thesetthatincludes
atleastall thevisibleobjectsplusmaybesomeadditional
invisible objects. It may classifyan invisible objectas
visible, but maynever classifya visible objectasinvisi-
ble.

5.3 Conservative visibility

A very importantconceptis theideaof conservativevisibility.
The ideais to designefficient output-sensitive algorithmsfor
computing � , thento usea standardHSR asa back-endfor
computingthecorrectimage.

Thesemethodsyield a potentialvisibility set(PVS)which
includesall the visible polygons,plus a small numberof oc-
cluded polygons. Then the HSR processesthe (hopefully
small)excessof polygonsincludedin thePVS.Conservative
occlusionculling techniqueshave the potentialto be signifi-
cantly moreefficient thanthe HSR algorithms. Conservative
culling algorithmscanalsobe integratedinto the HSR algo-
rithm, aimingtowardsanoutputsensitive algorithm[35].

To reducethe computationalcost, the conservative occlu-
sion culling algorithmsusuallyusea hierarchicaldatastruc-
turewherethesceneis traversedtop-down andtestedfor oc-
clusionagainsta smallnumberof selectedoccluders[18, 39].
In thesealgorithmstheselectionof thecandidateoccludersis
donebeforetheonlinevisibility calculations.Theefficiency of
thesemethodsis directly dependenton thenumberof occlud-
ersandtheir effectiveness.Sincetheocclusionis testedfrom
a point, thesealgorithmsareappliedin eachframeduringthe
interactive walkthrough.

5.4 A taxonomy of occlusion culling tech-
niques

In orderto roughly classifythe differentvisibility-culling al-
gorithms,wewill employ a loosely-definedtaxonomy:

� Conservativevs.Approximate.

Few visibility-culling algorithmsattemptto find theex-
actvisible set,sincethey aremostlyusedasa front-end
for anotherhidden-surfaceremoval algorithm,mostof-
ten the Z-buffer. Most techniquesdescribedin this pa-
per areconservative, that is, they overestimatethe visi-
ble set. Only a few approximatethe visible set,but are
not guaranteedof finding all the visible triangles,e.g.,
PLP[43, 42] (thereis alsoaconservative versionof PLP
which is describedin [40]). Otherscanbe tunedto be
conservative or approximatedependingon thetime con-
straintandavailableresources.In anattemptto acceler-
atetheculling stepthey mightactuallymisssmallvisible
primitives,suchasHOM [81, 80], andalsotheOpenGL
assistedocclusionculling of Bartzetal. [6, 5].

� Point vs.Region.

The major differencehereis whetherthe particularal-
gorithmperformscomputationsthatdependontheexact
locationof theviewpoint,or performsbulk computations
whichcanbere-usedanywherein a regionof space.



Obviously, from-region algorithmsperformtheir visibil-
ity computationson a region of space,that is, while the
viewer is insidethatregion,thesealgorithmstendto ren-
der thesamegeometry. Thestrengthof thefrom-region
visibility setis thatit is valid for anumberof frames,and
thusits cost is amortizedover a numberof frames(see
Section8).

Most other algorithms attempt to perform visible-set
computationsthat dependon the exact location of the
viewpoint.

� Precomputedvs.Online.

Most techniquesneedsomeform of preprocessing,but
whatwe meanby “precomputed”arethealgorithmsthat
actuallystorevisibility computationsaspartof theirpre-
processing.

Almostall of thefrom-regionalgorithmsshouldbeclas-
sifiedas“precomputed”.A notableexceptionis [44].

In general,theotheralgorithmsdescribeddo their visi-
bility computation“online”, althoughmuchof the pre-
processingmight have beenperformedbefore. For in-
stance,HOM [81, 80], DDO [7], Hudsonet al. [39],
Coorg andTeller [18], performsomeform of occluder
selectionwhich might take a considerableamountof
time(in theorderof hoursof preprocessing),but in gen-
eralhaveto savevery little informationto beusedduring
rendering.

� Image spacevs.Objectspace.

Almostall of thealgorithmsusesomeform of hierarchi-
cal datastructure. We classifyalgorithmsasoperating
in “image-space”versus“object-space”dependingon
wheretheactualvisibility determinationis performed.

For instance,HOM [81, 80] andHZB [35, 36] perform
theactualocclusiondeterminationin image-space(e.g.,
in HOM, theocclusionmapsarecomparedwith a2D im-
ageprojectionandnot the 3D original representation.).
Othertechniquesthatexplore image-spaceareDDO [7]
(which alsoexploresa form of object-spaceocclusion-
culling by performingaview-dependentoccludergener-
ation)and[6, 5].

Mostothertechniqueswork primarily in object-space.

� Software vs.Hardware.

Severalof thetechniquesdescribedcantake further(be-
sidesthe final z-buffer pass)advantageof hardwareas-
sistanceeitherfor its precomputationor duringtheactual
rendering.

For instance,thefrom-region techniqueof Durandet al.
[25] makes non-trivial useof the stencil buffer; HOM
[81, 80] usesthetexturehardwareto generatemipmaps;
[6, 5] usestheOpenGLselectionmode;andMeissneret
al. [49] usestheHPocclusion-cullingtest.

TheHP occlution-cullingtest[62] is not actuallyanal-
gorithmonits own, but abuilding blockfor furtheralgo-
rithms. It is alsoexploited(andexpanded)in [40].

� Dynamicvs.Staticscenes.

A few of thealgorithmsin theliteratureareableto han-
dledynamicscenes,suchas[68] andHOM [81].

Oneof the main difficulties is handlingchangesto ob-
ject hierarchiesthatmostvisibility algorithmsuse. The
morepreprocessingused,the harderit is to extend the
algorithmto handledynamicscenes.

� Individual vs.Fusedoccluders.

Given three primitives, A, B, and C, it might hap-
pen that neitherA nor B occludeC, but togetherthey
do occludeC. Someocclusion-cullingalgorithmsare
able to perform occluder-fusion, while othersare only
able to exploit singleprimitive occlusion. citeCohen-
Or:1998:CVA,Coorg:1997:ROC,ct-tccv-96 give exam-
ples of techniquesthat usea single (fixed numberof)
occluder(s).Papers[79, 35,42] supportoccluderfusion.

5.5 Related problems

Therearemany other interestingvisibility problems,for in-
stance:

– Shadow algorithms. Thepartsthatarenot visible from
the light sourcearein theshadow. Soocclusionculling
and shadow algorithmshave a lot in commonand in
many waysareconceptuallysimilar [78, 12]. It is inter-
estingto note that conservative occlusionculling tech-
niqueshave not beenas widely usedin shadow algo-
rithms.

– The Art Gallery Problem. Oneclassicvisibility prob-
lemis thatof positioningaminimal numberof guardsin
a gallery so that they cover all the walls of the gallery.
This classof problemhasbeenextensively studiedin
computationalgeometry, see, for instance,O’Rourke
[55].

In this context, “cover” can have a different meaning.
Much is known aboutthis problemin 2D, but in 3D, it
getsmuchharder. Fleishmanet al. [27] proposesanal-
gorithm for automaticallyfinding a setof posingcam-
eraswhich cover a 3D environment. Stuerzlinger[66]
proposesa techniquefor a similarproblem.

– Radiosity solutions. This is amuchmoredifficult prob-
lem to computeaccurately. In radiosity, energy needs
to be transferedfrom eachsurfaceto every other visi-
ble surfacein the environment[32, 37]. This requires
a from-region visibility determinationto be appliedat
eachsurfaceor patch.Exactsolutionsarenot practical,
andtechniquessuchasclustering[64] areoftenused.

6 Object-space culling algorithms

Work on object-spaceocclusionculling datesbackat leastto
the work of Teller and Sèquin [70] and Airey et al. [1] on
indoorvisibility.

Thework of TellerandSèquinis mostlybasedon2D,since
it dealswith computingpotentially visible setsfor cells in
anarchitecturalenvironment.Their algorithmfirst subdivides
spaceinto cellsusinga 2D BSPtree.Thenit usestheconnec-
tivity betweenthe cells, andcomputeswhetherstraightlines
canhit asetof “portals” (mostlydoors)in themodel.They el-
egantlymodelthestabbingproblemasa linearprogramming
problem,andin eachcell savethecollectionof potentiallyvis-
ible cells.Figure 11showsoneof theresultspresentedin their



Figure11: Resultsfrom [70] showing the potentiallyvisible
setfrom agivencell. Courtesyof SethTeller, UC, Berkeley.

paper. Thelinearprogrammingsolutioncomputescell-to-cell
visibility, whichdoesnotconstrainthepositionof aviewer in-
sidethecell, nor thedirectionin whichheis looking,andthus
is far too conservative. They alsoproposetechniqueswhich
furtherconstrainthePVSby computingeye-to-cellvisibility,
which take into considerationthe view-coneemanatingfrom
theviewer.

Another techniquethat exploits cells andportalsin mod-
els is describedin Luebke andGeorges[48]. Insteadof pre-
computingthevisibility, Luebke andGeorgesperformanon-
the-fly recursive depth-firsttraversalof thecellsusingscreen-
spaceprojectionsof theportalsto overestimatetheportal se-
quences. In their techniquethey usea “cull box” for each
portal, which is the axial 2D boundingbox of the projected
verticesof theportal.Any geometrywhich is not insidea cull
box of the portal cannotbe visible. The basic idea is then
to clip the portal1scull boxesas the cells are traversed,and
only to continuethetraversalinto cellswhichhavea non-zero
(intersection)portal-sequence.Their techniqueis simpleand
quiteeffective; thesourcecode(anSGI Performerlibrary) is
availablefor downloadfrom David Luebke’s webpage.1

6.1 Coorg and Teller

Coorg and Teller [17, 18] have proposedobject-spacetech-
niquesfor occlusionculling. The techniquein [18] is most
suitablefor usein thepresenceof largeoccludersin thescene.
Their algorithmexploresthe visibility relationshipsbetween
two convex objectsasin Figure 12. In brief,while anobserver
is betweenthetwo supportingplanesto theleft of A, it is never
possibleto seeB. TheCoorg andTeller techniqueusessimple
conceptssuchasthis to develop a techniquebasedon track-
ing visibility eventsamongobjectsastheusermovesandthe
relationshipsamongobjectschange.Thealgorithmproposed
in [17] is conservative, andexplorestemporalcoherency asit
tracksthevisibility events.

In [17], Coorg and Teller give sufficiency conditionsfor

1Pfportalscanbeobtainedat http://pfPortals.cs.virginia.edu.

Figure12: The figure highlights the visibility propertiesex-
ploitedby thealgorithmof Coorg andTeller [17, 18]. While
an observer is betweenthe two supportingplanesto the left
of A, it is never possibleto seeB. Courtesyof SatyanCoorg,
MIT.

computingthe visibility of two objects(that is, whetherone
occludestheother),basedontrackingrelationshipsamongthe
silhouetteedgessupportingand separatingthe planesof the
differentobjects. They build an algorithm which incremen-
tally trackschangesin thoserelationships.There,they also
show how to useobjecthierarchies(basedon octrees)to han-
dle thepotentialquadraticcomplexity computationalincrease.
Onedrawbackof this technique(aspointedoutby theauthors
in theirsubsequentwork [18]) is preciselythefactthatit needs
to reconstructthe visibility information for a continuousse-
quenceof viewpoints.

In [18], Coorg andTeller proposean improved algorithm.
(It is still basedon thevisibility relationshipshown in Figure
12.) Insteadof keepinga largenumberof continuousvisibil-
ity events,in [18], they dynamicallychooseasetof occluders,
which is usedto determinewhich portionsof the restof the
scenecannotbeseen.Thesceneis insertedinto anobjecthier-
archy, andtheoccludersareusedto determinewhich portions
of thehierarchycanbepruned,andnot rendered.

Coorg and Teller [18] develop several useful building
blocksfor implementingthis idea,includinga simplescheme
to determinewhen the fusion of multiple occluderscan be
addedtogether(seeFigure 13), anda fast techniquefor de-
terminingsupportingandseparatingplanes. They proposea
simplemetric for identifying thedynamicoccluderswhich is
basedon approximatingthesolidangleanobjectsubtends:

� A ���N ���V �
� �D � 2

, whereA is the areaof the occluder, �N the normal, �V the
viewing direction,and �D thevectorfrom theviewpoint to the
centerof theoccluder.



(a)

(b)

Figure13: The figure illustratesthat the algorithmdescribed
in [18] canperformocclusionfusionif theoccluderscombine
to be a larger “convex” occluder. Courtesyof SatyanCoorg,
MIT.

6.2 Culling using shadow frusta

Thework describedby Hudsonetal. in [39] is in severalways
similar to the work of Coorg andTeller [18]. Their scheme
alsoworks by dynamicallychoosinga setof occluders,then
using thoseoccludersas the basisfor culling the rest of the
scheme.Thedifferencesbetweenthetwo works lie primarily
in the details. In [39], the authorsproposeextra criteria for
choosingthe occluders.Besidesthe Coorg andTeller solid-
angleheuristic,they alsoproposetakinginto accountthedepth
complexity andcoherenceof theoccluders.They useaspatial
partitionof thescene,andfor eachcell, identifyingtheocclud-
ersthatwill beusedanytime theviewpoint is insidethatcell,
andstorethemfor lateruse.

A separatedatastructure,a hierarchyof boundingvolumes
is usedfor theocclusionculling. ThewayHudsonetal. deter-
minewhich partsof thehierarchyareoccludedis differentto
thatof Coorg andTeller. For eachof then bestoccludersthat
fall within theview frustum,theauthorsbuild a shadow frus-
tum usingthe viewpoint asthe apex andpassingthroughthe
occludersilhouette. The scenehierarchyis testedtop-down
againsteachof theseshadow frusta.If anodeof thehierarchy
is found to be totally enclosedby oneof the frustathenit is
occludedandhencediscarded(for this frame). If it is found
not to intersectany of themthenit totally visible andall the
objectsbelow it arerendered.If however it partially overlaps
even oneof themthen its childrenneedto be further tested.
Interferencedetectiontechniquesareusedfor speedingup the
tests.

6.3 BSP tree culling

Themethoddescribedin Hudsonet al. [39] canbe improved
usingBSPtrees.Bittner et al. [8] combinetheshadow frusta
of theoccludersinto anocclusiontree. This is donein a very
similar way to the SVBSPtreeof Chin andFeiner[11]. The
tree startsas a single lit (visible) leaf and occludersare in-
serted,in turn, into it. If an occluderreachesa lit leaf then
it augmentsthe treewith its shadow frustum; if it reachesa
shadowed(invisible) leaf thenit is just ignoredsinceit means
it alreadylies in anoccludedregion. Oncethetreeis built the
scenehierarchycanbecomparedwith it. Thecuberepresent-
ing thetop of thescenehierarchyis insertedinto thetree.If it
is foundto befully visible or fully occludedthenwe stopand
actappropriately, otherwiseits childrenarecomparedwith the
occlusiontreerecursively. Thismethodhasanadvantageover
[39] in thatinsteadof comparingthescenewith eachof theN
shadow frusta, it is comparedwith onetreeof depth(poten-
tially) O(N).

The above techniqueis conservative; an alternative exact
methodwasproposedmuchearlierby Naylor [53]. That in-
volveda merging of theocclusiontreewith theBSPtreerep-
resentingthescenegeometry.

6.4 Prioritized-layered projection

Prioritized-Layered Projection (PLP) is a techniquefor fast
renderingof high-depthcomplexity scenes.It worksby esti-
matingthevisiblepolygonsof ascenefrom agivenviewpoint
incrementally, oneprimitive at a time. On its own, PLPis not
aconservative technique,but insteadis suitablefor thecompu-
tationof partiallycorrectimagesfor useaspartof time-critical
renderingsystems. At a very high level, PLP amountsto
the modificationof a simpleview-frustumculling algorithm.
However, it requiresthecomputationof a specialoccupancy-
basedtessellation,and the assignmentof a solidity value to
eachcell of the tessellation,which is usedto computea spe-
cial orderingonhow primitivesgetprojected.

Thecoreof thePLPalgorithmconsistsof a space-traversal
algorithm, which prioritizes the projectionof the geometric
primitivesin sucha way asto avoid (actuallydelay)project-
ing cellsthathave a small likelihoodof beingvisible. Instead
of explicitly overestimating,thealgorithmworkson a budget.
At eachframe,theusercanprovide themaximumnumberof
primitivesto berendered,apolygonbudget,andthealgorithm
will deliver whatit considersto bethesetof primitiveswhich
maximizestheimagequality (usinga solidity-basedmetric).

PLP is composedof two parts. First, PLP tessellatesthe
spacethat containsthe original input geometrywith convex
cells.During thisone-timepreprocessing,acollectionof cells
is generatedin sucha way asto roughlykeepa uniform den-
sity of primitivespercell. Thesamplingleadsto largecellsin
unpopulatedareas,andsmall cells in areasthat containa lot
of geometry. Using the numberof modelingprimitives as-
signedto a given cell (e.g., tetrahedron),a solidity value ρ
is defined. The accumulatedsolidity value usedthroughout
thepriority-driven traversalalgorithmcanbe larger thanone.
The traversalalgorithmprioritizescells basedon their solid-
ity value.Preprocessingis fairly inexpensive,andcanbedone
on large datasets(aboutonemillion triangles)in a coupleof
minutes.

Therenderingalgorithmtraversesthecellsin roughlyfront-
to-backorder. Startingfrom the seedcell, which in general
containstheeye position,it keepscarvingcellsout of thetes-



(a) (b)

Figure14: The Prioritized-LayeredProjectionAlgorithm. PLP attemptsto prioritize the renderingof geometryalonglayersof
occlusion.Cells thathave beenprojectedby thePLPalgorithmarehighlightedin redwireframeandtheir associatedgeometryis
rendered,while cells thathave not beenprojectedareshown in green.Notice that the cells occludedby thedeskareoutlinedin
green,indicatingthatthey have notbeenprojected.

(a) (b)

Figure15: The input geometryis a modelof anoffice. (a) snapshotof thePLPalgorithmhighlightsthespatialtessellationused.
Thecellswhich have not beenprojectedin thespatialtessellationarehighlightedin green.(b) This figure illustratestheaccuracy
of PLP. Shown in redarethepixelswhichPLPmisses.In white,we show thepixelsPLPrenderscorrectly.



sellation.Thebasicideaof thealgorithmis to carvethetessel-
lation along layers of polygons. We definethe layeringnum-
berζ � ℵ of amodelingprimitive

�
in thefollowing intuitive

way. If we ordereachmodelingprimitive alongeachpixel by
its positive (assume,without lossof generality, that

�
is in the

view frustum)distanceto theeye point,we defineζ � � � asthe
smallestrankof

�
over all thepixels to which it contributes.

Clearly, ζ � � � � 1 if andonly if
�

is visible. Finding rank 1
primitivesis equivalent to solving the visibility problem. In-
steadof solvingthisdifficult problem,thePLPalgorithmuses
simpleheuristics.The traversalalgorithmattemptsto project
themodelingprimitivesby layers,thatis, all primitivesof rank
1, then2, andsoon. We do this by alwaysprojectingthecell
in thefront � (wecall thefront, thecollectionof cellsthatare
immediatecandidatesfor projection)which is leastlikely to
beoccludedaccordingto its solidity value. Initially, thefront
is empty, and as cells are inserted,we estimateits accumu-
latedsolidity valueto reflectits positionduring the traversal.
Every time a cell in thefront is projected,all of thegeometry
assignedto it is rendered.

PLP is very effective in finding the visible polygons. For
moredetailsaboutPLP, includingcomprehensive results,see
[43, 42].

7 Image-space occlusion culling

As the namesuggestsimage-spacealgorithmsperform the
culling in the viewing coordinates.The key featurein these
algorithmsis thatduringrenderingof thescenetheimagegets
filled up andsubsequentobjectscanbe culled away quickly
by the already-filledpartsof the images. Sincethey operate
onadiscretearrayof finite resolutionthey alsotendto besim-
pler to implementandmorerobustthantheobject-spaceones,
which tendto have numericalprecisionproblems.

Sincetestingeachindividual polygonagainstthe imageis
too slow, almostall thealgorithmsthatwe will describehere,
useconservative tests. They placea hierarchyon the scene,
with the lowestlevel usuallybeingtheboundingboxesof in-
dividualobjects,andthey performtheocclusiontestonthathi-
erarchy. Approximatesolutionscanalsobeproducedby some
of the image-spacealgorithmsby classifyingasoccludedge-
ometrypartswhich arevisible throughan insignificantpixel
count.This invariablyresultsin anincreasein runningspeed.

When the scenesare composedof many small primi-
tiveswithoutwell-definedlargeoccludersthenperformingthe
culling in image-spacebecomesmore attractive. The pro-
jectionsof many small andindividually insignificantocclud-
erscanbeaccumulatedon the imageusingstandardgraphics
rasterizinghardware,to cover a significantpart of the image
whichcanthenbeusedfor culling. Anotheradvantageof these
methodsis thattheoccludersdonothaveto bepolyhedral;any
objectthatcanberasterisedcanbeused.

7.1 Hierarchical Z-buffer

The HierarchicalZ-buffer (HZB) [35, 36] is an extensionof
the popularHSR method,the Z-buffer. In this method,oc-
clusion is determinedby testingagainstthe Z-pyramid. The
Z-pyramidis a layeredbuffer with differentresolutionat each
level. At thefinestlevel it is just thecontentof theZ-buffer,
eachcoarserlevel is createdby halvingtheresolutionin each
dimensionand eachelementholding the furthestZ-value in
thecorresponding2x2 window of thefiner level below. This

is doneall the way to the top, whereit is just onevaluecor-
respondingto thefurthestZ-valuein thebuffer. During scan-
conversionof the primitives, if the contentsof the Z-buffer
changethenthenew Z-valuesarepropagatedup thepyramid
to thecoarserlevels.

In [35] the sceneis arrangedinto an octreewhich is tra-
versedtop-down front-to-backandeachnodeis testedfor oc-
clusion. If at any point a nodeis foundto beoccludedthenit
is skipped;otherwiseany primitivesassociatedwith it areren-
deredandtheZ-pyramid is updated.To determinewhethera
nodeis visible,eachof its facesis testedhierarchicallyagainst
theZ-pyramid. Startingfrom thecoarsestlevel, thenearestZ
valueof thefaceis comparedwith thevaluein theZ-pyramid.
If thefaceis foundto befurtheraway thenit is occluded;oth-
erwiseit recursively descendsdown to finer levelsuntil its vis-
ibility canbedetermined.

To allow for real-timeperformance,a modificationof the
hardware Z-buffer is suggestedthat allows for much of the
culling processingto bedonein thehardware. In theabsence
of the customhardware the processcanbe somewhat accel-
eratedthroughtheuseof temporalcoherence,by first render-
ing thegeometrythatwasvisible from thepreviousframeand
building theZ-pyramidfrom its Z-buffer.

7.2 Hierarchical occlusion map

Thehierarchicalocclusionmapmethod[80] is similar in prin-
ciple to the HZB, though,it wasdesignedto work with cur-
rentgraphicshardwareandalsosupportsapproximatevisibil-
ity culling; objectsthat arevisible throughonly a few pixels
can be culled using an opacity threshold. The occlusionis
arrangedhierarchicallyin a structurecalled the Hierarchical
OcclusionMap (HOM) and the boundingvolume hierarchy
of thesceneis testedagainstit. However, unlike theHZB, the
HOM storesonly opacityinformationwhile thedistanceof the
occluders(Z-values)is storedseparately. Thealgorithmthen
needsto independentlytestobjectsfor overlapwith occluded
regionsof theHOM andfor depth.

During preprocessing,a databaseof potentialoccludersis
assembled.Thenat run-time, for eachframe, the algorithm
performstwo steps:constructionof the HOM andocclusion
culling of thescenegeometryusingtheHOM.

To build the HOM, a setof occludersis selectedfrom the
occluderdatabaseandrenderedinto the frame-buffer. At this
pointonly occupancy informationis required;thereforetextur-
ing, lighting andZ-buffering areall turnedoff. Theoccluders
are renderedas pure white on a black background.The re-
sult is readfrom the buffer and forms the highestresolution
in the occlusionmap hierarchy. The coarserlevels are cre-
atedby averagingsquaresof 2x2 pixels to form a mapwhich
hashalf theresolutiononeachdimension.Texturinghardware
canprovide someaccelerationof the averagingif the sizeof
themapis largeenoughto warranttheset-upcostof thehard-
ware. As we proceedto coarserlevels the pixels arenot just
blackor white (occludedor visible) but canbeshadesof grey.
Theintensityof apixel atsuchalevel shows theopacityof the
correspondingregion.

An object is testedfor occlusion by first projecting its
boundingbox onto the screenandfinding the level in the hi-
erarchywherethepixelshave approximatelythesamesizeas
theextent of the projectedbox. If the box overlapspixels of
the HOM which are not opaque,it meansthat the box can-
not beculled. If thepixelsareopaque(or have opacityabove
thespecifiedthresholdwhenapproximatevisibility is enabled)



Figure16: A hierarchyof occlusionmapscreatedby recur-
sively averagingblocksof pixels.Courtesyof HansongZhang,
UNC.

thentheobjectis projectedonaregionof theimagethatis cov-
ered. In this casea depthtestis neededto determinewhether
theobjectis behindtheoccluders.

In paper[80] anumberof methodsareproposedfor testing
thedepthof theobjectsagainstthatof theoccluders.Thesim-
plesttestmakesuseof aplaneplacedbehindall theoccluders;
any objectthat passesthe opacitytest is comparedwith this.
Although this is fastandsimple it canbe over-conservative.
An alternative is thedepthestimationbuffer wherethescreen
spaceis partitionedinto a setof regionsanda separateplane
is usedfor eachregionof thepartition.

7.3 Directional discretized occluders

The Directional discretizedoccluders(DDOs) approachis
similar to theHZB andHOM methodsin thatit alsousesboth
object- and image-spacehierarchies. In their preprocessing
stage,Bernardiniet al. [7] approximatethe input modelwith
anoctreeandcomputesimple,view-dependentpolygonaloc-
cludersto replacethe complex input geometryin subsequent
visibility queries.Eachfaceof every cell of the octreeis re-
gardedasa potentialoccluderandthe solid anglesspanning
eachof the two halfspaceson the two sidesof the faceare
partitionedinto regions. For eachregion, they computeand
storea flag that recordswhetherthat faceis a valid occluder
for any viewpoint containedin thatregion. Eachsquare,axis-
alignedfaceis a view-dependentpolygonaloccluderthatcan
be usedin placeof the original geometryin subsequentvisi-
bility queries.

The renderingalgorithm visits the octreein a top-down,
front-to-backorder. Valid occludersfoundduringthetraversal
areprojectedandaddedto a two-dimensionaldatastructure,
suchas a quadtree. Eachoctreenodeis first testedagainst
the currentcollection of projectedoccluders: if the nodeis
not visible, traversalof its subtreestops.Otherwise,recursion
continuesandif a visible leaf nodeis reached,its geometryis
rendered.

TheDDO preprocessingstageis not inexpensive, andmay
take in the orderof hoursfor modelscontaininghundredsof
thousandsof polygons.However, themethoddoeshave sev-
eraladvantagesif onecantoleratethecostof thepreprocess-
ing step.Thecomputedoccludersareall axis-alignedsquares,
a fact that canbeexploited to designefficient datastructures
for visibility queries.The memoryoverheadof the DDOs is
only six bitmasksper octreenode. The DDO approachalso
benefitsfrom occluderfusion anddoesnot requireany spe-
cial or advancedgraphicshardware. The approachcould be
usedwithin theframework of othervisibility culling methods

aswell. Culling methodswhich needto pre-selectlarge oc-
cluders,(e.g. Coorg andTeller [18]), or which pre-renderoc-
cludersto computeocclusionmaps,(e.g. Zhang,et Al. [81]),
couldbenefitfrom theDDO preprocessingstepto reducethe
overheadof visibility tests.

B
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B

Figure17: Illustrationof theDDO approach.Theinputgeom-
etry, A andB, is drawn asdashedlines.Thevalid occludersfor
thetwo viewpointsareshown asthick solid lines.Courtesyof
JamesKlosowski, IBM.

Figure17 is a two-dimensionalillustrationof theDDO ap-
proach.The grid is a discretizationof thespacesurrounding
the scene;it representsour octreenodes. The input geome-
try, A andB, is shown usingdashedlines. For thepurposeof
occlusionculling, the geometryA canbe replacedby a sim-
plerobject(shown usingthick solid lines)which is asubsetof
thegrid edges,that is, theoctreefaces.Thetwo figuresshow
thesamescenefrom differentviewpointsandview directions.
Notethatthesubsetof grid edgesthatcanactasoccluders(in
placeof geometryA) changesastheviewpoint changes.

7.4 OpenGL-assisted occlusion culling

Bartz et al. in [6, 5] describea different methodof image-
spaceculling. The sceneis arrangedin a hierarchicalrepre-
sentationand testedagainstthe occludedpart of the image,
whichresemblestheHZB andtheHOM. However, in contrast
to thesemethods,thereis nohierarchicalrepresentationof the
occlusion,ratherOpenGLcallsareusedto querythehardware
for visibility information. Both view-frustum and occlusion
culling aredonein thatway.

For view-frustum culling the OpenGLselectionmode is
used. The selectionmodecan track a certainregion of the
screenand identify whethera given object is renderedonto
it. By settingthe tracked region to be the entirescreenand
renderinghierarchicallytheboundingvolumesof theobjects,
it canquickly be decidedon which to intersecttheview vol-
ume.Of coursetherenderingof theboundingvolumeshereis
purely for selectingtheobjectsanddoesnot contributeto the
frame-buffer.

To testfor occlusion,aseparatebuffer, thevirtual occlusion
buffer, is associatedwith theframe-buffer to detectthepossi-
ble contribution of any object to the frame-buffer. This was
implementedwith a stencilbuffer. Theboundingboxesof the
scenearehierarchicallysentdown the graphicspipeline. As



they arerasterised,thecorrespondingpixelsaresetin thevir-
tual occlusionbuffer whenever thez-buffer testsucceeds.The
frame-buffer andthez-buffer remainunalteredthroughoutthis
process.

The virtual occlusionbuffer is then readand any bound-
ing box that hasa footprint in it is consideredto be (at least
partially) visible andtheprimitiveswithin it canberendered.
Sincetheoperationof readingthevirtual occlusionbuffer can
beveryexpensive,it wasproposedtosampleit by readingonly
spansfrom it. Thesamplinginevitably makesthealgorithma
non-conservative test.

As in the methodsabove, approximateculling canbe im-
plementedif we allow boxesthathave a smallfootprint in the
occlusionbuffer to beconsideredinvisible. Theperformance
of thealgorithmdependson thehardwarebeingused.In low-
to mid-rangegraphicsworkstationswherepart of the render-
ing processis in software, the reductionin renderedobjects
canprovide significantspeed-ups.On high-endmachinesthe
set-upfor readingthebuffer becomesa moresignificantpor-
tion of theoverall time,reducingtheusefulnessof themethod.

7.5 Hardware assisted occlusion culling

Hardwarevendorshavestartedadoptingocclusion-cullingfea-
tures into their designs. Greeneet al. [35] report that the
KubotaPacific Titan 3000wasan early exampleof graphics
hardwarethatsupportedocclusion-cullingfeatures.

A hardwarefeatureavailableonHPmachines(whichseems
quite similar to the KubotaPacific Titan 3000)makesit pos-
sible to determinethevisibility of objectsascomparedto the
currentvaluesin the z-buffer. The idea is to adda feedback
loop to thehardwarewhich is ableto checkif changeswill be
madeto thez-buffer whenscan-converting a given primitive.
Onepossibleuseof thishardwarefeatureis to avoid rendering
a very complex setmodelby first checkingif it is potentially
visible. In generalthis canbe donewith the HP occlusion-
cullingextensionby checkingwhetheranenvelopingprimitive
(usuallytheboundingboxof theobject,but in generalit might
bemoreefficientto useanenclosingk-dop[41]) is visible,and
only renderingtheactualobjectif thesimplerenclosingobject
is indeedvisible.

The actualhardwarefeatureasimplementedon the HP fx
seriesgraphicsacceleratorsis explainedin [62] and[63]. One
way to usethehardwareis to querywhethertheboundingbox
of anobjectis visible. This canbedoneasfollows:

glEnable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_FALSE);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
DrawBoundingBoxOfObject();
bool isVisible;
glGetBooleanv(GL_OCCLUSION_RESULT_HP, &isVisible);
glDisable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

Clearly, if theboundingbox of anobjectis not visible, the
objectitself,whichpotentiallycouldcontainalargeamountof
geometry, mustnotbevisible. Thishardwarefeatureis imple-
mentedin several of HP’s graphicsaccelerators,for instance,
theHP fx6 graphicsaccelerator. Severson[63] estimatesthat
performinganocclusion-querywith a boundingbox of anob-
ject on the fx6 is equivalent to renderingabout190 25-pixel
triangles. This indicatesthat a naive approachwhereobjects

areconstantlychecked for occlusionmight actuallyhurt per-
formance,and not achieve the full potentialof the graphics
board. In fact, it is possibleto slow down the fx6 consid-
erably if oneis unlucky enoughto project the polygonsin a
back-to-frontorder(becausenoneof theprimitiveswould be
occluded).

Meissneret al. [49] proposeaneffective occlusionculling
techniqueusing this hardware test. In a preprocessingstep,
a hierarchicaldatastructureis built which containsthe input
geometry. (In their paper, they proposeseveral differentdata
structures,andstudytheir relative performance.)Their algo-
rithm is asfollows:

(1) traversethehierarchicaldatastructureto find the leaves
whichareinsidetheview frustum;

(2) sort the leaf cellsby thedistancebetweentheviewpoint
andtheir centroids;

(3) for eachsortedcell, renderthegeometrycontainedin the
cell only if thecell boundaryis visible.

In their recentofferings, HP hasimproved the occlusion-
culling features.Thefx5 andfx10 hardwarecanperformsev-
eral occlusionculling queriesin parallel [19]. Also, HP re-
portsthat their OpenGLimplementationshave beenchanged
to usetheocclusion-cullingfeaturesautomaticallywhenpos-
sible. For instance,beforerenderinga long display list, HP
software would actually perform an occlusionquery before
renderingall thegeometry.

ATI’s HyperZ technology[51] is anotherexample of a
hardware-basedocclusion-cullingfeature. HyperZ hasthree
differentoptimizationswhich they claim greatlyimprove the
performanceof 3D applications.Themaintruston all theop-
timizationsis on loweringthememorybandwidthrequiredfor
updatingthe Z-values(which they claim is the single largest
userof bandwidthon their cards).Oneoptimizationis a tech-
niquefor losslesscompressionof Z-values.Anotheris a“f ast”
Z-buffer clear, which performsa lazy clearof depthvalues.
ATI alsoreportson the implementationof thehierarchicalZ-
buffer of Greeneet al. [35] in hardware. Detailsof theactual
featuresaresketchy, andat thispointATI hasnotexposedany
of the functionality of their hardwareto applications,that is,
applicationsareblind, andshouldautomaticallyget improved
performance.

Therearereportsthatothervendors,includingSGI,Nvidia,
andso on, areworking on similar occlusion-cullingfeatures
for their upcominghardware.

7.6 Discussion

Thereareseveral otheralgorithmswhich aretargetedat par-
ticular typesof scenes.For example,the occludershadows
proposedby WonkaandSchmalstieg [75] specificallytarget
urbanenvironments. In this work the sceneis partitionedin
a regular 2D grid. During run-time a numberof occluders
are selectedand their ’shadows’ - the planesdefinedby the
view-point and the top edgeof eachoccluder- arerendered
into anauxiliary buffer calledthecull-map. Eachpixel in the
cull-map(image-space)correspondsto agrid cell of thescene
grid (object-space).If the cull-mappixel is not coveredthen
objectsin thecorrespondingscenegrid cell arepotentiallyvis-
ible.

Honget al. [38] useanimage-basedportaltechnique(sim-
ilar in somerespectsto thecells-and-portalswork of Luebke



andGeorges[48]) to be able to fly througha virtual human
colon in real-time. The colon is partitionedinto cells at pre-
processingandtheseareusedto acceleratetheocclusionwith
thehelpof a Z-buffer at run-time.

One drawbackof the techniquesdescribedin this section
is that they rely on being able to readinformation from the
graphicshardware. Unfortunately, on mostcurrentarchitec-
tures,usingany sort of feedbackfrom thegraphicshardware
is quite slow andplacesa limit on the achievable framerate
of suchtechniques.As Bartz et al. [5] show, thesemethods
areusuallyonly effective whenthescenecomplexity is above
a largethreshold.

Thereareothershortcomingsto thesetechniques.Oneof
the main problemsis the needfor preselectionof occluders.
Sometechniques,suchasHOM, needto createdifferentver-
sionsof the actualobjects(throughsomesort of “occlusion-
preserving”simplificationalgorithm)to beableto generatethe
occlusion-maps.Anotherinterestingissueis how to dealwith
dynamicscenes.Themorepreprocessingused,themoreex-
pensive it is to dealwith dynamicenvironments.

The BSP tree methodintroducedby Naylor [53] already
in 1992 can be thought of as somewhere betweenimage-
precisionand object-precision,sincealthoughhe useda 2D
BSP tree in image-spacefor culling the 3D scene,this was
done using object-precisionoperationsrather than image-
precision.

8 From-region visibility

In a typical visibility culling algorithmtheocclusionis tested
from a point [18, 39]. Thus, thesealgorithmsareappliedin
eachframeduring the interactive walkthrough. A promising
alternative is to find thePVSfrom a region or viewcell, rather
thanfrom a point. The computationcostof the PVS from a
viewcell would thenbe amortizedover all the framesgener-
atedfrom thegivenviewcell.

Effective methodshave beendevelopedfor indoor scenes
[70, 30], but for generalarbitraryscenes,the computationof
the visibility set from a region is more involved than from
a point. Sampling the visibility from a number of view
points within the region [33] yields an approximatedPVS,
which may then causeunacceptableflickering artifactsdur-
ing the walkthrough. Conservative methodswereintroduced
in [15, 59]whicharebasedontheocclusionof individual large
convex objects.

In thesemethodsa given objector collectionof objectsis
culledaway if andonly if they arefully occludedby a single
convex occluder. It wasshown thataconvex occluderis effec-
tive only if it is larger thanthe viewcell [52]. However, this
conditionis rarelymet in real applications.For example,the
objectsin Figure 18 aresmallerthanthe viewcell, andtheir
umbrae(with respectto theviewcell) arerathersmall. Their
uniondoesnot occludea significantportionof thescene(see
in (a)),while theiraggregateumbrais large(seein (b)).

Recently, new techniquesweredevelopedin whichthevisi-
bility culling from aregionis basedonthecombinedocclusion
of a collectionof objects(occluderfusion). Thecollectionor
clusterof objectsthat contributesto the aggregateocclusion
hasto be neitherconnectednor convex. The effective from-
region culling of thesetechniquesis significantly larger than
previous from-region visibility methods. Below, four tech-
niquesaredescribedfollowedby adiscussion.

8.1 Conservative volumetric visibility with oc-
cluder Fusion

Schaufleretal. [60] introduceaconservative techniquefor the
computationof viewcell visibility. Themethodoperateson a
discreterepresentationof spaceandusestheopaqueinteriorof
objectsasoccluders.This choiceof occludersfacilitatestheir
extensioninto adjacentopaqueregionsof space,in essence,
maximizingtheir sizeandimpact.

Themethodefficiently detectsandrepresentstheregionsof
spacehiddenby occludersandis the first to usetheproperty
thatoccluderscanalsobeextendedinto emptyspaceprovided
this spaceitself is occludedfrom theviewcell. This is proved
to beeffective for computingtheocclusionby a setof occlud-
ers,successfullyrealizingoccluderfusion.

Initially, the boundaryof objectsis rasterizedinto the dis-
cretizationof spaceand the interior of theseboundariesis
filled with opaquevoxels.For eachviewcell, theocclusionde-
tectionalgorithmiteratesovertheseopaquevoxels,andgroups
themwith adjacentopaquevoxelsinto effectiveblockers.Sub-
sequently, a shaft is constructedaroundthe viewcell andthe
blocker to delimit the region of spacehiddenby the blocker.
This classificationof regionsof spaceinto visible andhidden
is notedin thespatialdatastructure.As regionsof spacehave
alreadybeenfoundto behiddenfrom theviewcell, extension
of blockersinto neighboringvoxelscanalsoproceedinto these
hiddenregionsrealizingoccluderfusionwith all theoccluders
whichcausedthis region to behidden.

As an optimization, opaquevoxels are usedin the order
from largeto smallandfrom front to back. Occludedopaque
voxelsarenotconsideredfurtherasblockers.

To recover the visibility statusof objectsin the original
scenedescription,the spacethey occupy is looked up in the
spatialdatastructureand, if all the voxels intersectedby the
objectareclassifiedashidden,the objectis guaranteedto be
hiddenaswell.

Theauthorspresentspecializedversionsfor thecasesof 2D
and2 1/2Dvisibility, andmotivatetheeaseof extensionto 3D:
becauseonly two convex objectsat a time areconsideredin
thevisibility classification(theviewcell andtheoccluder),the
usualdifficultiesof extendingvisibility algorithmsfrom 2D to
3D, causedby triple-edgeevents,areavoided. Exampleap-
plicationsdescribedin thepaperincludevisibility preprocess-
ing for real-timewalkthroughsandreductionin thenumberof
shadow raysrequiredby a ray-tracer(see[60] for details).

8.2 Conservative visibility preprocessing us-
ing extended projections

Durandetal. [25] (seealso[47]) presentanextensionof point-
basedimage-spacemethodssuchas the HierarchicalOcclu-
sion Maps[81] or the HierarchicalZ-buffer [35] to volumet-
ric visibility from a view-cell, in thecontext of preprocessing
PVScomputation.Occludersandoccludeesareprojectedonto
a plane,andanoccludeeis declaredhiddenif its projectionis
completelycoveredby the cumulative projectionof occlud-
ers (and if it lies behind). The projection is however more
involvedin thecaseof volumetricvisibility: to ensureconser-
vativeness,theExtendedProjectionof anoccluderunderesti-
matesits projectionfrom any point in theview-cell, while the
ExtendedProjectionof anoccludeeis anoverestimation(see
Figure 20(a)). A discrete(but conservative) pixel-basedrep-
resentationof extendedprojectionsis used,calledanextended
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Figure18: The union of the umbraeof the individual objectsis insignificant,while their aggregateumbrais large andcanbe
representedby a singlevirtual occluder.

depthmap. Extendedprojectionsof multiple occludersaggre-
gate,allowing occluder-fusion, that is, the cumulative occlu-
sioncausedby multiple occluders.For convex view-cells,the
extendedprojectionof a convex occluderis theintersectionof
its projectionsfrom theverticesof thecell. This canbecom-
putedefficiently usingthe graphicshardware(stencilbuffer)
anda conservative rasterization.Concave occludersintersect-
ing theprojectionplanearesliced(see[25] for details).

A singlesetof six projectionplanescanbeused,asdemon-
stratedby anexampleinvolving a city database.Theposition
of theprojectionplaneis however crucialfor theeffectiveness
of ExtendedProjections.This is why a reprojectionoperator
wasdevelopedfor hard-to-treatcases.It permitsa groupof
occludersto be projectedonto one planewherethey aggre-
gate,andthenreprojectthis aggregatedrepresentationontoa
new projectionplane(seeFigure 20(b)).This re-projectionis
usedto defineanocclusion-sweepwherethesceneis sweptby
parallelplanesleaving thecell. Thecumulative occlusionob-
tainedon thecurrentplaneis reprojectedonto thenext plane
aswell asnew occluders.Thisallowsthehandlingof verydif-
ferentcasessuchastheocclusioncausedby leavesin a forest.

8.3 Virtual occluders

Koltun et al. [44] introducethenotionof from-region virtual
occluders. Given a sceneanda viewcell, a virtual occluder
is a view-dependent(simple) convex object, which is guar-
anteedto be fully occludedfrom any given point within the
viewcell andwhich servesasan effective occluderfrom the
givenviewcell. Virtual occluderscompactlyrepresenttheag-
gregateocclusionfor a given cell. The introductionof such
view-dependentvirtual occludersenablesto apply an effec-
tive region-to-region or cell-to-cell culling techniqueand to
efficiently computea potentialvisibility set(PVS) from a re-
gion/cell. The paperpresentsan object-spacetechniquethat
synthesizessuchvirtual occludersby aggregatingthe visibil-
ity of a set of individual occluders. It is shown that only a

smallsetof virtual occludersis requiredto computethePVS
efficiently on-the-flyduringthereal-timewalkthrough.

In the preprocessingstageseveral objectsareidentifiedas
seedobjects.For eachseedobject,a clusterof nearbyobjects
is constructedsothatasinglevirtual occluderfaithfully repre-
sentstheocclusionof this clusterof objects.At first, theclus-
ter is definedto includeonly theseedobject.Then,iteratively,
at eachstep,moreobjectswhich satisfya geometriccriterion
areaddedto theclusterof occluders,thusaugmentingtheag-
gregateumbraof the cluster. The virtual occluderis placed
justbehindthefurthestobjectin thecluster, andis completely
containedin the aggregateumbraof the cluster(seeFigs.18
and21).

Onevirtual occluderis storedat eachstepof the iteration.
As aresult,at theendof theprocess,thereis alargeandhighly
redundantgroupof virtual occluders.This groupcanbewell
representedby a smallsubsetof themosteffective virtual oc-
cluders.

In the real-timerenderingstage,the PVS of a viewcell is
computedjust beforethe walkthroughenterstheviewcell. It
is doneby hierarchicallytestingthescene-graphnodesagainst
thevirtual occluders.Sinceonly a very smallnumberof them
areused,this testis extremelyfast.

The3D problemis solvedby a2.5Dimplementation,which
provesto be effective for most typical scenes,suchasurban
andarchitecturalwalkthroughs.The2.5Dimplementationper-
formsa seriesof slicesin theheightdimension,andusesthe
2D algorithmto construct2D virtual occludersin eachslice.
Theseoccludersarethenextendedto 3D by giving themthe
heightof their respective slices.

8.4 Occluder fusion for urban walkthroughs

Wonkaet al. [76] presentanapproachbasedon theobserva-
tion thatit ispossibletocomputeaconservativeapproximation
of the umbrafor a viewcell from a setof discretepoint sam-
plesplacedon the viewcell’s boundary. A necessary, though
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Figure19: Theindividualumbrae(with respectto theyellow viewcell) of objects1, 2 and3 donot intersect,but yet theirocclusion
canbeaggregatedinto a largerumbra.)

not sufficient conditionthat an objectis occludedis that it is
completelycontainedin the intersectionof all samplepoints’
umbrae. Obviously, this condition is not sufficient as there
may be viewing positionsbetweenthe samplepoints where
theconsideredobjectis visible.

However, shrinkinganoccluderby ε providesasmallerum-
brawith auniqueproperty:anobjectclassifiedasoccludedby
the shrunkoccluderwill remainoccludedwith respectto the
original largeroccluderwhenmoving the viewpoint no more
thanε from its originalposition.

Consequently, a point sampleusedtogetherwith a shrunk
occluderis a conservative approximationfor a smallview cell
with radiusε centeredat thesamplepoint. If theoriginalview
cell is coveredwith samplepointsso that every point on the
boundaryis containedin an ε -neighborhoodof at leastone
samplepoint, then an object lying in the intersectionof the
umbraefrom all samplepoints is occludedfor the original
viewcell.

Using this idea, multiple occluderscan be consideredsi-
multaneously. If theobjectis occludedby the joint umbraof
the shrunkoccludersfor every samplepoint of the viewcell,
it is occludedfor the whole view cell. In that way, occluder
fusion for an arbitrarynumberof occludersis implicitly per-
formed(seeFigure22 andFigure23).

8.5 Discussion

When the visibility from a region is concerned,occlusion
causedby individual occludersin a generalsettingis insignif-
icant. Thus,it is essentialto take advantageof aggregateoc-
clusioncausedby groupsof nearbyobjects. The above four
papersaddressthe problemof occlusionaggregationalsore-
ferredto asoccluderfusion.

All four techniquesareconservative; they aggregateocclu-
sionin mostcases,but not in all possibleones.In sometech-
niques,thecriterionto fusetwo occludersor to aggregatetheir
occlusionsis basedon the intersectionof two umbrae.How-
ever, in [44, 77], amoreelaboratecriterionis used,whichper-

mitsaggregationof occlusionsevenin caseswheretheumbrae
arenot necessarilyintersected.Thesecasesareillustratedin
Figure19.

To copewith thecomplexity of thevisibility in 3D scenes,
all thetechniquesusesomediscretizations.

Thefirst methoddiscretizesthespaceinto voxels,andop-
eratesonly on voxels. This leadsto the underestimationof
occlusionwhentheumbraof occludersis relatively smalland
partially overlapssomelargevoxels,but doesnot completely
containany. Theadvantageof this approachis its generality:
it canbe appliedto any representationof 3D scenes,andnot
necessarilypolygonal.

Thesecondmethoddiscretizesthespacein two ways.First,
it projectsall objectsonto a discretesetof projectionplanes,
and second,the representationof objectsin thoseplanesis
alsodiscrete. Moreover, 3D projectionsarereplacedby two
2D projections(seeFigure20), to avoid performinganalytical
operationson objectsin 3D space.The advantageof this al-
gorithmis that,sincemostoperationsareperformedin image-
space,they canbehardware-assistedto shortenthepreprocess-
ing time.

Thethird methodis object-spaceanalyticalin the2D case.
It treatsthe3D casesasa 2.5Dsceneandsolvesit by a series
of 2D casesby discretizingtheheightdimension.It is shown
thatin practicethevisibility of 2.5Dentitiesapproximatewell
thevisibility of theoriginal3D models.

The forth methodsamplesthe visibility from a viewcell
from adiscretenumberof samplepoints.Althoughit underes-
timatesocclusion,it is alsoa conservative method.This may
be insignificantin the caseof closeand large occluders,but
in caseswherethe occlusionis createdby a large numberof
smalloccluders,theapproximationmightbetoocrude.

Somethingthatcouldproveusefulwhencomputingvisibil-
ity from a region is a methodfor depth-orderingobjectswith
respectto theregion. Findingsuchanorderingcanbea chal-
lengingtask,if at all possible,sinceit might vary at different
samplepointsin thegiven region. Chrysanthouin [12] (Sec-
tion 3.2)suggestsahybridmethodbasedonGraphTheoryand
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Figure21: Growing thevirtual occludersby intersectingobjectswith theactive separatingandsupportinglines.



Figure 22: Sampling of the occlusion from five sampling
points. Courtesyof PeterWonka,ViennaUniversityof Tech-
nology.

BSPtreeswhich will sorta setof polygonsasfar aspossible
andreportunbreakablecycleswherethey arefound.

8.6 Approximate from-region visibility

In [2] a schemeto combineapproximateocclusionculling
with levels-of-detail(LOD) techniquesis presented.Theidea
is to identify partially-occludedobjectsin addition to fully-
occludedones.Theassumptionis thatpartially-occludedob-
jectstake lessspaceon the screen,andthereforecanbe ren-
deredusinga lower LOD. The authorsusethe term Hardly-
VisibleSet(HVS) to describeasetconsistingof bothfully and
partially visibleobjects.

A set of occludersis selectedand simplified to a collec-
tion of Partially-overlappingboxes. Occlusionculling is per-
formed from the viewcell using theseboxes as occludersto
find the ”fully-visible” part of theHVS. It is performedcon-
sideringonly occlusionby individual boxes [15, 59]. There
is no occlusionfusion,but a singlebox mayrepresentseveral
connectedoccluderobjects.

To compute partially-visible objects, all the occluders
(boxes)areenlargedby a certainsmalldegree,andocclusion
culling is performedagainusing thesemagnifiedoccluders.
The objectsthat areoccludedby the enlargedoccludersand
notby theoriginalonesareconsideredto bepartiallyoccluded
from theviewcell, andarethuscandidatesto berenderedat a
lower LOD.

Several partsof the HVS are computedby enlarging the
occludersseveral times,eachtime by a differentdegree,thus,
classifyingobjectswith adifferentdegreeof visibility. During
real-timerendering,the LOD is selectedwith respectto the
degreeof visibility of theobjects.

It shouldbenotedthatthisbasicassumptionof thedegreeof
visibility is solelyheuristic,sinceanobjectpartially occluded
from a region doesnot meanit is partially occludedfrom any
point within the region. It couldbe fully visible at onepoint
andpartiallyvisibleor occludedatanother.

Figure23: Thefusedumbrafrom thefive points(in thefigure
above) is theintersectionof theindividual umbrae.It is larger
thantheunionof umbraeof theoriginal viewcell. Courtesyof
PeterWonka.

In [33] anotherapproximatefrom-region visibility tech-
niqueis proposed.Castingraysfrom afive-dimensionalspace
samplesthe visibility. The paperdiscusseshow to minimize
the numberof rayscastto achieve a reliableestimateof the
visibility from a region.

8.7 The PVS storage space problem

PrecomputingthePVSfrom aregionrequiressolvingapromi-
nentspaceproblem. The sceneis partitionedinto viewcells
andfor eachcell a PVSis precomputedandstoredreadilyfor
the online renderingstage.Sincethe numberof viewcells is
inherentlylarge,thetotal sizeof all thevisibility setsis much
larger thantheoriginal sizeof thescene.Aside for a few ex-
ceptionsthis problemhasnot received enoughattentionyet.
VandePanneandStewart[72] presentatechniqueto compress
precomputedvisibility setsby clusteringobjectsandviewcells
of similar behavior. Gotsmanet al. [33] presenta hierarchi-
calschemeto encodethevisibility efficiently. Cohen-Oretal.
[16, 15] dealwith the transmissionof visibility setsfrom the
server to theclient andin [15, 52] discusstheselectionof the
bestviewcell sizein termsof thesizeof thePVS.

A completelydifferentapproachwastakenby Koltun etal.
[44]. The PVS of eachviewcell doesnot needto be stored
explicitly. An intermediaterepresentationthat requiresmuch
lessstoragespacethanthePVSis createdandusedto generate
thePVSon-the-flyduringrendering.

9 Conclusion

In thispaper, wehavesurveyedmostof thevisibility literature
availablein the context of walkthroughapplications.We see
thata considerableamountof knowledgehasbeenassembled
in the last decade;in particular, the numberof papersin the
areahasincreasedsubstantiallyin the lastcoupleof years.It
is hardto sayexactly wherethefield is heading,but thereare
someinterestingtrendsandopenproblems.

It seemsfurtherresearchis necessaryinto techniqueswhich
lower theamountof preprocessingrequired.Also, memoryis
a big issuefor largescenes,especiallyin thecontext of from-
region techniques.



It is expectedthat more hardware featureswhich can be
usedto improve visibility computationswill be available. At
present,a major impedimentis the fact that readingbackin-
formation from the graphicsboardsis very slow. It is ex-
pectedthat this will get muchfaster, enablingimprovements
in hardware-basedvisibility culling algorithms.Theefficient
handlingof dynamicscenesis anopenareaof researchat this
point.
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Visibility, Problems, Techniques and Applications

Frédo Durand
MIT- Lab for Computer Science

Analytical visibility

Analytical visibility 2

Introduction
• Why bother with analytical visibility?
• Help understand

– What are the problems
– What do we want to do?
– What is possible?
– What is costly?

• Offer insights
• Can be simplified for practical solutions

Analytical visibility 3

Plan
• Spaces 
• Visual events
• Aspects
• The Aspect Graph
• The Visibility Skeleton
• 3D vs. 2D

Analytical visibility 4

Spaces
• Analytical tools

– To understand what’s going on

• Computational tools
– Some computations are easier in a certain space

Spaces – Aspect and visual event – Aspect Graph – Visibility Skeleton

Analytical visibility 5

Spaces
• Object-space
• Image-space
• Viewpoint
• Line-space

Spaces – Aspect and visual event – Aspect Graph – Visibility Skeleton Analytical visibility 6

Object-space vs. Image-space
• [Sutherland et al. 1974]
• Aka image-precision and object-precision
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Analytical visibility 7

Object-space
• 3D space where the scene is defined
• E.g., triangle is occluded if it is inside the 

pyramid

Analytical visibility 8

Image-space
• Computation performed in the plane of the image
• E.g. is triangle inside rectangle?
• Usually discretized in pixels

Analytical visibility 9

Viewpoint space
• Space of all possible viewpoints
• Often same as object-space
• Is the current viewpoint one of the viewpoints 

where triangle is occluded?

Analytical visibility 10

Viewpoint space
• Space of all possible viewpoints
• Often same as object-space
• But can be restrained

– Orthographic projection (viewing sphere)
– Limited degrees of freedom

• Fastest viewpoint-space method ever:
– Precompute everything for every viewpoint!

Analytical visibility 11

Line space
• Visibility expressed in terms of rays
• E.g. are all rays between the eye and the triangle 

blocked by the rectangle?

Analytical visibility 12

Line space
• Visibility expressed in terms of rays
• Paradigm: ray-casting
• Line space is 4D

– E.g. intersection with two planes
– Or one direction + intersection with one plane

• Set of line through a point is a 2D manifold in 4D
– Defines a view

• Ray-space is 5D
– Line + origin
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Analytical visibility 13

Line Space

• Plücker space
– [Teller 92, Pellegrini91-94]

Analytical visibility 14

Classification of lines
• Line intersecting an object
• Line intersecting two objects

Analytical visibility 15

Typical advantages and drawbacks
• Image-space

+ Robust, easier to code, occluder fusion, can use polygon soup
– Limited to one viewpoint, aliasing

• Object-space
+ Precision, can handle from-region visibility
– often robustness problems

• Viewpoint space
+ Super efficient at runtime
– Costly storage and precomputation , no dynamic object

• Line space
+ Natural space, simple atomic operation (ray-casting), arbitrary 

geometry
– 4D, often requires sampling (non conservative), or too complex

Analytical visibility 16

Visual event
• Where does visibility change?
• How does it change?

• Qualitative approach

Analytical visibility 17

Visual event
• Appearance-disappearance of objects

(qualitative change of a view)

e
v

2

1

3

Analytical visibility 18

Visual event
• Appearance-disappearance of objects

(qualitative change of a view)
• « Wedge » defined by a vertex and an edge
• Type EV

e
v
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Analytical visibility 19

Visual event
• Appearance-disappearance of objects
• Limits of umbra

e
v

Penumbra
(source partially visible)

Umbra
(source invisible)

Analytical visibility 20

Triple-edge event

e1

e3

v

e21

3

2

Analytical visibility 21

Aspect
• “Qualitative” view
• Topological

Qualitatively equivalent

(same aspect)

Qualitatively different
(different aspect)

Analytical visibility 22

Aspect Graph
• Aspect graph

– Characterization of the set of possible views of an object
– [Koenderink and Van Doorn 79, Plantinga and Dyer 90, Gigus

et al. 90-91, Petitjean et al. 92]

Analytical visibility 23

Size of the Aspect Graph
For a polygonal scene with n edges
• O(n3) visual events
• O(n6) for orthographic views
• O(n9) for perspective views

• A more reasonable estimate may be around 
< O(n4) and O(n 6), but still very costly!

Analytical visibility 24

Aspect graph for walkthroughs
• [Plantinga 93]
• Pre-compute all visibility events
• While walking through, you know when the set 

of visible objects changes
• Unfortunately, very costly pre-processing and 

storage
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Analytical visibility 25

Aspect graph for walkthroughs II
(Forward reference)
• [Coorg and Teller 97]
• Local and linearized version of the aspect graph

Analytical visibility 26

Visibility Skeleton
Goal
• Global visibility structure

– views
– limits of shadows
– appearance of objects
– mutual visibility

• Characterise the changes in visibility
– where?
– how?

Analytical visibility 27

Visual event
• Appearance-disappearance of objects

(qualitative change of a view)

e
v

2

1

3

Analytical visibility 28

Critical line
• Line going through e and v

e
v

Analytical visibility 29

Critical lines
• 1D set of lines going through  e and v

(1 degree of freedom)

e
vtt

Analytical visibility 30

Extremal stabbing line
• 1D set of lines going through  e and v

(1 degree of freedom) 
• Extremity: extremal stabbing line (VV) 

(0 degree of freedom)

e v
v’

v"
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Analytical visibility 31

Extremal stabbing line
• Type VEE (0 degree of freedom)

e1 v

e2

Analytical visibility 32

Adjacent critical line set
• Generated by the second edge
• Same extremity ve1e2

e1

v

e2

Analytical visibility 33

Summary
• Visual events

– EV, EEE

• 1D critical line sets
• Extremal stabbing lines

– VV, VEE, E4

• Adjacencies
– catalogue

Analytical visibility 34

Graph in line space
• Extremal stabbing line = Node 
• Critical line set = Arc 

Analytical visibility 35

Visibility skeleton

Graph in line spaceScene

• Problem: how to access the information?

Analytical visibility 36

Visibility skeleton

Arc of the skeleton

Q

Visual event ev

Array indexed by the polygons Search tree

ve

Q

P

P
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Analytical visibility 37

Results
• Scenes up to 1500 polygons

– 1.2 million of nodes
– 32 minutes for computation

• Memory
– O(n4) in theory, n2 observed

• Time
– O(n5) in theory, n2.4 observed

Analytical visibility 38

Use of the skeleton
• Exact computation of form-factors

– point-polygon

• Discontinuity meshing
– scene subdivision along shadow boundaries
– also for indirect lighting

• Refinement criterion
– perceptual metric
– error estimation

Analytical visibility 39

Results
• 492 polygons : 10 minutes 23 seconds

Analytical visibility 40

Comparison

[Gibson 96]With skeleton
10 minutes 23 seconds 1 hour 57 minutes

Analytical visibility 41

Discussion
• General structure of global visibility
• Simple and local

– on-demand construction

• Future work issues
– robustness (partial treatment)
– complexity: scalability 

(quadratic growth is unacceptable)

Analytical visibility 42

3D is much harder than 2D
• line space grows from 2D to 4D
• A line is a hyperplane in 2D, not in 3D
• Visual events are simple in 2D : lines

They can be curved ruled surfaces in 3D
• Combinatorial explosion in 3D
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CHAPTER 1

Introduction

Il déduisit que la bibliothèque est totale, et que ses
étagères consignent toutes les combinaisons possibles
des vingt et quelques symboles orthographiques (nom-
bre quoique très vaste, non infini), c’est à dire tout ce
qu’il est possible d’exprimer dans toutes les langues.

Jorge Luis BORGES, La bibliothèque de Babel

VAST AMOUNT OF WORK has been published about visibility in many different domains. In-
spiration has sometimes traveled from one community to another, but work and publications
have mainly remained restricted to their specific field. The differences of terminology and
interest together with the obvious difficulty of reading and remaining informed of the cu-
mulative literature of different fields have obstructed the transmission of knowledge between
communities. This is unfortunate because the different points of view adopted by different

domains offer a wide range of solutions to visibility problems. Though some surveys exist about certain spe-
cific aspects of visibility, no global overview has gathered and compared the answers found in those domains.
The second part of this thesis is an attempt to fill this vacuum. We hope that it will be useful to students begin-
ning work on visibility, as well as to researchers in one field who are interested in solutions offered by other
domains. We also hope that this survey will be an opportunity to consider visibility questions under a new
perspective.

1 Spirit of the survey

This survey is more a “horizontal” survey than a “vertical” survey. Our purpose is not to precisely compare the
methods developed in a very specific field; our aim is to give an overview which is as wide as possible.

We also want to avoid a catalogue of visibility methods developed in each domain: Synthesis and compar-
ison are sought. However, we believe that it is important to understand the specificities of visibility problems
as encountered in each field. This is why we begin this survey with an overview of the visibility questions as
they arise field by field. We will then present the solutions proposed, using a classification which is not based
on the field in which they have been published.

5
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Our classification is only an analysis and organisation tool; as any classification, it does not offer infallible
nor strict categories. A method can gather techniques from different categories, requiring the presentation of a
single paper in several chapters. We however attempt to avoid this, but when necessary it will be indicated with
cross-references.

We have chosen to develop certain techniques with more details not to remain too abstract. A section in
general presents a paradigmatic method which illustrates a category. It is then followed by a shorter description
of related methods, focusing on their differences with the first one.

We have chosen to mix low-level visibility acceleration schemes as well as high-level methods which make
use of visibility. We have also chosen not to separate exact and approximate methods, because in many cases
approximate methods are “degraded” or simplified versions of exact algorithms.

In the footnotes, we propose some thoughts or references which are slightly beyond the scope of this survey.
They can be skipped without missing crucial information.

2 Flaws and bias

This survey is obviously far from complete. A strong bias towards computer graphics is clearly apparent, both
in the terminology and number of references.

Computational geometry is insufficiently treated. In particular, the relations between visibility queries and
range-searching would deserve a large exposition. 2D visibility graph construction is also treated very briefly.

Similarly, few complexity bounds are given in this survey. One reason is that theoretical bounds are not
always relevant to the analysis of the practical behaviour of algorithms with “typical” scenes. Practical timings
and memory storage would be an interesting information to complete theoretical bounds. This is however
tedious and involved since different machines and scenes or objects are used, making the comparison intricate,
and practical results are not always given. Nevertheless, this survey could undoubtedly be augmented with
some theoretical bounds and statistics.

Terrain (or height field) visibility is nearly absent of our overview, even though it is an important topic,
especially for Geographical Information Systems (GIS) where visibility is used for display, but also to optimize
the placement of fire towers. We refer the interested reader to the survey by de Floriani et al. [FPM98].

The work in computer vision dedicated to the acquisition or recognition of shapes from shadows is also
absent from this survey. See e.g. [Wal75, KB98].

The problem of aliasing is crucial in many computer graphics situations. It is a large subject by itself, and
would deserve an entire survey. It is however not strictly a visibility problem, but we attempt to give some
references.

Neither practical answers nor advice are directly provided. The reader who reads this survey with the
question “what should I use to solve my problem” in mind will not find a direct answer. A practical guide
to visibility calculation would unquestionably be a very valuable contribution. We nonetheless hope that the
reader will find some hints and introductions to relevant techniques.

3 Structure

This survey is organised as follows. Chapter 2 introduces the problems in which visibility computations occur,
field by field. In chapter 3 we introduce some preliminary notions which will we use to analyze and classify the
methods in the following chapters. In chapter 4 we survey the classics of hidden-part removal. The following
chapters present visibility methods according to the space in which the computations are performed: chapter
5 deals with object space, chapter 6 with image-space, chapter 7 with viewpoint-space and finally chapter 8
treats line-space methods. Chapter 9 presents advanced issues: managing precision and dealing with moving
objects. Chapter 10 concludes with a discussion..

In appendix 12 we also give a short list of resources related to visibility which are available on the web. An
index of the important terms used in this survey can be found at the end of this thesis. Finally, the references
are annotated with the pages at which they are cited.



CHAPTER 2

Visibility problems

S’il n’y a pas de solution, c’est qu’il n’y a pas de
problème

LES SHADOKS

ISIBILITY PROBLEMS arise in many different contexts in various fields. In this section we
review the situations in which visibility computations are involved. The algorithms and data-
structures which have been developed will be surveyed later to distinguish the classification
of the methods from the context in which they have been developed. We review visibility in
computer graphics, then computer vision, robotics and computational geometry. We conclude

this chapter with a summary of the visibility queries involved.

1 Computer Graphics

For a good introduction on standard computer graphics techniques, we refer the reader to the excellent book by
Foley et al. [FvDFH90] or the one by Rogers [Rog97]. More advanced topics are covered in [WW92].

1.1 Hidden surface removal

View computation has been the major focus of early computer graphics research. Visibility was a synonym for
the determination of the parts/polygons/lines of the scene visible from a viewpoint. It is beyond the scope of
this survey to review the huge number of techniques which have been developed over the years. We however
review the great classics in section 4. The interested reader will find a comprehensive introduction to most of
the algorithms in [FvDFH90, Rog97]. The classical survey by Sutherland et al. [SSS74] still provides a good
classification of the techniques of the mid seventies, a more modern version being the thesis of Grant [Gra92].
More theoretical and computational geometry methods are surveyed in [Dor94, Ber93]. Some aspects are also
covered in section 4.1. For the specific topic of real time display for flight simulators, see the overview by
Mueller [Mue95].

The interest in hidden-part removal algorithms has been renewed by the recent domain of non-photorealistic
rendering, that is the generation of images which do not attempt to mimic reality, such as cartoons, technical

7
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illustrations or paintings [MKT+97, WS94]. Some information which are more topological are required such
as the visible silhouette of the objects or its connected visible areas.

View computation will be covered in chapter 4 and section 1.4 of chapter 5.

1.2 Shadow computation

The efficient and robust computation of shadows is still one of the challenges of computer graphics. Shadows
are essential for any realistic rendering of a 3D scene and provide important clues about the relative positions
of objects1. The drawings by da Vinci in his project of a treatise on painting or the construction by Lambert
in Freye Perspective give evidence of the old interest in shadow computation (Fig. 2.1). See also the book
by Baxandall [Bax95] which presents very interesting insights on shadows in painting, physics and computer
science.

Figure 2.1: (a) Study of shadows by Leonardo da Vinci (Manuscript Codex Urbinas). (a) Shadow construction
by Johann Heinrich Lambert (Freye Perspective).

Hard shadows are caused by point or directional light sources. They are easier to compute because a point
of the scene is either in full light or is completely hidden from the source. The computation of hard shadows
is conceptually similar to the computation of a view from the light source, followed by a reprojection. It is
however both simpler and much more involved. Simpler because a point is in shadow if it is hidden from the
source by any object of the scene, no matter which is the closest. Much more involved because if reprojection
is actually used, it is not trivial by itself, and intricate sampling or field of view problems appear.

Soft shadows are caused by line or area light sources. A point can see all, part, or nothing of such a source,
defining the regions of total lighting, penumbra and umbra. The size of the zone of penumbra varies depending
on the relative distances between the source, the blocker and the receiver (see Fig. 2.2). A single view from the
light is not sufficient for their computation, explaining its difficulty.

An extensive article exists [WPF90] which surveys all the standard shadows computation techniques up to
1990.

Shadow computations will be treated in chapter 5 (section 4.1, 4.2, 4.4 and 5), chapter 6 (section 2.1 , 6 and
7) and chapter 7 (section 2.3 and 2.4).

The inverse problem has received little attention: a user imposes a shadow location, and a light position
is deduced. It will be treated in section 5.6 of chapter 5. This problem can be thought as the dual of sensor
placement or good viewpoint computation that we will introduce in section 2.3.

1.3 Occlusion culling

The complexity of 3D scenes to display becomes larger and larger, and can not be rendered at interactive
rates, even on high-end workstations. This is particularly true for applications such as CAD/CAM where the

1 The influence of the quality of shadows on the perception of the spatial relationships is however still a controversial topic. see e.g.
[Wan92, KKMB96]
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(a) (b)

source

blocker

receiver

Figure 2.2: (a) Example of a soft shadow. Notice that the size of the zone of penumbra depends on the mutual
distances (the penumbra is wider on the left). (b) Part of the source seen from a point in penumbra.

databases are often composed of millions of primitives, and also in driving/flight simulators, and in walk-
throughs where a users want to walk through virtual buildings or even cities.

Occlusion culling (also called visibility culling) attempts to quickly discard the hidden geometry, by com-
puting a superset of the visible geometry which will be sent to the graphics hardware. For example, in a city,
the objects behind the nearby facades can be “obviously” rejected.

An occlusion culling algorithm has to be conservative. It may declare potentially visible an object which
is in fact actually hidden, since a standard view computation method will be used to finally display the image
(typically a z-buffer [FvDFH90]).

A distinction can be made between online and offline techniques. In an online occlusion culling method,
for each frame the objects which are obviously hidden are rejected on the fly. While offline Occlusion culling
precomputations consist in subdividing the scene into cells and computing for each cell the objects which may
be visible from inside the cell. This set of visible object is often called the potentially visible sets of the cell. At
display time, only the objects in the potentially visible set of the current cell are sent to the graphics hardware 2.

The landmark paper on the subject is by Clark in 1976 [Cla76] where he introduces most of the concepts
for efficient rendering. The more recent paper by Heckbert and Garland [HG94] gives a good introduction to
the different approaches for fast rendering. Occlusion culling techniques are treated in chapter 5 (section 4.4,
6.3 and 7), chapter 6 (section 3 and 4), chapter 7 (section 4) and chapter 8 (section 1.5).

1.4 Global Illumination

Global illumination deals with the simulation of light based on the laws of physics, and particularly with the
interactions between objects. Light may be blocked by objects causing shadows. Mirrors reflect light along the
symmetric direction with respect to the surface normal (Fig. 2.3(a)). Light arriving at a diffuse (or lambertian)
object is reflected equally in all directions (Fig. 2.3(b)). More generally, a function called BRDF (Bidirectional
Reflection Distribution Function) models the way light arriving at a surface is reflected (Fig. 2.3(c)). Fig 2.4
illustrates some bounces of light through a scene.

Kajiya has formalised global illumination with the rendering equation [Kaj86]. Light traveling through a
point in a given direction depends on all the incident light, that is, it depends on the light coming from all the
points which are visible. Its solution thus involves massive visibility computations which can be seen as the
equivalent of computing a view from each point of the scene with respect to every other.

The interested reader will find a complete presentation in the books on the subject [CW93b, SP94, Gla95].
Global illumination method can also be applied to the simulation of sound propagation. See the book by

Kutruff [Kut91] or [Dal96, FCE+98]. See section 4.3 of chapter 5. Sound however differs from light because

2Occlusion-culling techniques are also used to decrease the amount of communication in multi-user virtual environments: messages
and updates are sent between users only if they can see each other [Fun95, Fun96a, CT97a, MGBY99]. If the scene is too big to fit in
memory, or if it is downloaded from the network, occlusion culling can be used to load into memory (or from the network) only the part of
the geometry which may be visible [Fun96c, COZ98].
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Figure 2.3: Light reflection for a given incidence angle. (a) Perfect mirror reflection. (b) Diffuse reflection. (c)
General bidirectional reflectance distribution function (BRDF).

Figure 2.4: Global illumination. We show some paths of light: light emanating from light sources bounces on
the surfaces of the scene (We show only one outgoing ray at each bounce, but light is generally reflected in all
direction as modeled by a BRDF).

the involved wavelength are longer. Diffraction effects have to be taken into account and binary straight-line
visibility is a too simplistic model. This topic will be covered in section 2.4 of chapter 6.

In the two sections below we introduce the global illumination methods based on ray-tracing and finite
elements.

1.5 Ray-tracing and Monte-Carlo techniques

Whitted [Whi80] has extended the ray-casting developed by Appel [App68] and introduced recursive ray-
tracing to compute the effect of reflecting and refracting objects as well as shadows. A ray is simulated from
the viewpoint to each of the pixels of the image. It is intersected with the objects of the scene to compute
the closest point. From this point, shadow rays can be sent to the sources to detect shadows, and reflecting
or refracting rays can be sent in the appropriate direction in a recursive manner (see Fig. 2.5). A complete
presentation of ray-tracing can be found on the book by Glassner [Gla89] and an electronic publication is
dedicated to the subject [Hai]. A comprehensive index of related paper has been written by Speer [Spe92a]

More complete global illumination simulations have been developed based on the Monte-Carlo integration
framework and the aforementioned rendering equation. They are based on a probabilistic sampling of the
illumination, requiring to send even more rays. At each intersection point some rays are stochastically sent to
sample the illumination, not only in the mirror and refraction directions. The process then continues recursively.
It can model any BRDF and any lighting effect, but may be noisy because of the sampling.

Those techniques are called view dependent because the computations are done for a unique viewpoint.
Veach’s thesis [Vea97] presents a very good introduction to Monte-Carlo techniques.

The atomic and most costly operation in ray-tracing and Monte-Carlo techniques consists in computing the
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Figure 2.5: Principle of recursive ray-tracing. Primary rays are sent from the viewpoint to detect the visible
object. Shadow rays are sent to the source to detect occlusion (shadow). Reflection rays can be sent in the
mirror direction.

first object hit by a ray, or in the case of rays cast for shadows, to determine if the ray intersects an object. Many
acceleration schemes have thus been developed over the two last decades. A very good introduction to most of
these techniques has been written by Arvo and Kirk [AK89].

Ray-shooting will be treated in chapter 5 (section 1 and 4.3), chapter 6 (section 2.2), chapter 8 (section 1.4
and 3) and chapter 9 (section 2.2).

1.6 Radiosity

Radiosity methods have first been developed in the heat transfer community (see e.g. [Bre92]) and then adapted
and extended for light simulation purposes. They assume that the objects of the scene are completely diffuse
(incoming light is reflected equally in all directions of the hemisphere), which may be reasonable for archi-
tectural scene. The geometry of the scene is subdivided into patches, over which radiosity is usually assumed
constant (Fig. 2.6). The light exchanges between all pairs of patches are simulated. The form factor between
patches A and B is the proportion of light leaving A which reaches B, taking occlusions into account. The
radiosity problem then resumes to a huge system of linear equations, which can be solved iteratively. Formally,
radiosity is a finite element method. Since lighting is assumed directionally invariant, radiosity methods pro-
vide view independent solutions, and a user can interactively walk through a scene with global illumination
effects. A couple of books are dedicated to radiosity methods [SP94, CW93b, Ash94].

Figure 2.6: Radiosity methods simulate diffuse interreflexions. Note how the subdivision of the geometry is
apparent. Smoothing is usually used to alleviate most of these artifacts.

Form factor computation is the costliest part of radiosity methods, because of the intensive visibility com-
putations they require [HSD94]. An intricate formula has been derived by Schroeder and Hanrahan [SH93]
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for the form factor between two polygons in full visibility, but no analytical solution is known for the partially
occluded case.

Form factor computation will be treated in chapter 4 (section 2.2), chapter 5 (section 6.1 and 7), in chapter
6 (section 2.3), chapter 7 (section 2.3), chapter 8 (section 2.1) and chapter 9 (section 2.1).

Radiosity needs a subdivision of the scene, which is usually grid-like: a quadtree is adaptively refined in the
regions where lighting varies, typically the limits of shadows. To obtain a better representation, discontinuity
meshing has been introduced. It tries to subdivides the geometry of the scene along the discontinuities of the
lighting function, that is, the limits of shadows.

Discontinuity meshing methods are presented in chapter 5 (section 5.3), chapter 7 (section 2.3 and 2.4),
chapter 8 (section 2.1) and chapter 9 (section 1.3, 1.5 and 2.4) 3.

1.7 Image-based modeling and rendering

3D models are hard and slow to produce, and if realism is sought the number of required primitives is so huge
that the models become very costly to render. The recent domain of image-based rendering and modeling copes
with this through the use of image complexity which replaces geometric complexity. It uses some techniques
from computer vision and computer graphics. Texture-mapping can be seen as a precursor of image-based
techniques, since it improves the appearance of 3D scenes by projecting some images on the objects.

View warping [CW93a] permits the reprojection of an image with depth values from a given viewpoint to a
new one. Each pixel of the image is reprojected using its depth and the two camera geometries as shown in Fig.
2.7. It permits re-rendering of images at a cost which is independent of the 3D scene complexity. However,
sampling questions arise, and above all, gaps appear where objects which were hidden in the original view
become visible. The use of multiple base images can help solve this problem, but imposes a decision on how
to combine the images, and especially to detect where visibility problems occur.

initial image
pixels with depth

reprojected image

new viewpoint

?

?
?
?
?

?

Figure 2.7: View warping. The pixels from the initial image are reprojected using the depth information.
However, some gaps due to indeterminate visibility may appear (represented as “?” in the reprojected image)

Image-based modeling techniques take as input a set of photographs, and allow the scene to be seen from
new viewpoints. Some authors use the photographs to help the construction of a textured 3D model [DTM96].

3Recent approaches have improved radiosity methods through the use of non constant bases and hierarchical representations, but the
cost of form factor computation and the meshing artifact remain. Some non-diffuse radiosity computations have also been proposed at a
usually very high cost. For a short discussion of the usability of radiosity, see the talk by Sillion [Sil99].
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Other try to recover the depth or disparity using stereo vision [LF94, MB95]. Image warping then allows the
computation of images from new viewpoints. The quality of the new images depends on the relevance of the
base images. A good set of cameras should be chosen to sample the scene accurately, and especially to avoid
that some parts of the scene are not acquired because of occlusion.

Some image-based rendering methods have also been proposed to speedup rendering. They do not require
the whole 3D scene to be redrawn for each frame. Instead, the 2D images of some parts of the scene are cached
and reused for a number of frames with simple transformation (2D rotation and translation [LS97], or texture
mapping on flat [SLSD96, SS96a] or simplified [SDB97] geometry). These image-caches can be organised
as layers, and for proper occlusion and parallax effects, these layers have to be wisely organised, which has
reintroduced the problem of depth ordering.

These topics will be covered in chapter 4 (section 4.3), chapter 5 (section 4.5), chapter 6 (section 5) and
chapter 8 (section 1.5).

1.8 Good viewpoint selection

In production animation, the camera is placed by skilled artists. For others applications such as games, tele-
conference or 3D manipulation, its position is also very important to permit a good view of the scene and the
understanding of the spatial positions of the objects.

This requires the development of methods which automatically optimize the viewpoint. Visibility is one
of the criteria, but one can also devise other requirements to convey a particular ambiance [PBG92, DZ95,
HCS96].

The visual representation of a graph (graph drawing) in 3D raises similar issues, the number of visual
alignments should be minimized. See section 1.5 of chapter 7.

We will see in section 2.3 that the placement of computer vision offers similar problems. The corresponding
techniques are surveyed in chapter 5 (section 4.5 and 5.5) and chapter 7 (section 3).

2 Computer Vision

An introduction and case study of many computer vision topics can be found in the book by Faugeras [Fau93]
or the survey by Guerra [Gue98]. The classic by Ballard and Brown [BB82] is more oriented towards image
processing techniques for vision.

2.1 Model-based object recognition

The task of object recognition assumes a database of objects is known, and given an image, it reports if the
objects are present and in which position. We are interested in model-based recognition of 3D objects, where
the knowledge of the object is composed of an explicit model of its shape. It first involves low-level computer
vision techniques for the extraction of features such as edges. Then these features have to be compared with
corresponding features of the objects. The most convenient representations of the objects for this task represent
the possible views of the object (viewer centered representation) rather than its 3D shape (object-centered
representation). These views can be compared with the image more easily (2D to 2D matching as opposed to
3D to 2D matching). Fig. 2.8 illustrates a model-based recognition process.

One thus needs a data-structure which is able to efficiently represent all the possible views of an object.
Occlusion has to be taken into account, and views have to be grouped according to their similarities. A class
of similar views is usually called an aspect . A good viewer-centered representation should be able to a priori
identify all the possible different views of an object, detecting “where” the similarity between nearby views is
broken.

Psychological studies have shown evidences that the human visual system possesses such a viewer-centered
representation, since objects are more easily recognised when viewed under specific viewpoints [Ull89, EB92].

A recent survey exists [Pop94] which reviews results on all the aspects of object recognition. See also the
book by Jain and Flynn [JF93] and the survey by Crevier and Lepage [CL97]
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viewer-centered representation

input image

extracted features

Figure 2.8: Model-based object recognition. Features are extracted from the input image and matched against
the viewer-centered representation of an L-shaped object.

Object recognition has led to the development of one of the major visibility data structures, the aspect
graph4 which will be treated in sections 1 of chapter 7 and section 1.4 and 2.4 of chapter 9.

2.2 Object reconstruction by contour intersection

Object reconstruction takes as input a set of images to compute a 3D model. We do not treat here the recon-
struction of volumetric data from slices obtained with medical equipment since it does not involve visibility.

We are interested in the reconstruction process based on contour intersection. Consider a view, from which
the contour of the object has been extracted. The object is constrained to lie inside the cone defined by the
viewpoint and this contour. If many images are considered, the cones can be intersected and a model of the
object is estimated [SLH89]. The process is illustrated in Fig. 2.9. This method is very robust and easy to
implement especially if the intersections are computed using a volumetric model by removing voxels in an
octree [Pot87].

(a) (b)

Figure 2.9: Object reconstruction by contour intersection. The contour in each view defines a general cone in
which the object is constrained. A model of the object is built using the intersection of the cones. (a) Cone
resulting from one image. (b) Intersection of cones from two images.

However, how close is this model to the actual object? Which class of objects can be reconstructed using
this technique? If an object can be reconstructed, how many views are needed? This of course depends on
self-occlusion. For example, the cavity in a bowl can never be reconstructed using this technique if the camera
is constrained outside the object. The analysis of these questions imposes involved visibility considerations, as
will be shown in section 3 of chapter 5.

4However viewer centered representation now seem superseded by the use of geometric properties which are invariant by some geo-
metric transformation (affine or perspective). These geometric invariants can be used to guide the recognition of objects [MZ92, Wei93].



2. COMPUTER VISION 15

2.3 Sensor placement for known geometry

Computer vision tasks imply the acquisition of data using any sort of sensor. The position of the sensor can
have dramatic effects on the quality and efficiency of the vision task which is then processed. Active vision
deals with the computation of efficient placement of the sensors. It is also referred to as viewpoint planning.

In some cases, the geometry of the environment is known and the sensor position(s) can be preprocessed.
It is particularly the case for robotics applications where the same task has to be performed on many avatars of
the same object for which a CAD geometrical model is known.

The sensor(s) can be mobile, for example placed on a robot arm, it is the so called “camera in hand”. One
can also want to design a fixed system which will be used to inspect a lot of similar objects.

An example of sensor planning is the monitoring of a robot task like assembly. Precise absolute positioning
is rarely possible, because registration can not always be performed, the controllers used drift over time and the
object on which the task is performed may not be accurately modeled or may be slightly misplaced [HKL98,
MI98]. Uncertainties and tolerances impose the use of sensors to monitor the robot Fig. 2.10 and 2.11 show
examples of sensor controlled task. It has to be placed such that the task to be performed is visible. This
principally requires the computation of the regions of space from which a particular region is not hidden. The
tutorial by Hutchinson et al. [HH96] gives a comprehensive introduction to the visual control of robots.

Figure 2.10: The screwdriver must be placed very precisely in front of the screw. The task is thus controlled by a camera.

Figure 2.11: The insertion of this peg into the hole has to be performed very precisely, under the control of a
sensor which has to be carefully placed.

Another example is the inspection of a manufactured part for quality verification. Measurements can for
example be performed by triangulation using multiple sensors. If the geometry of the sensors is known, the
position of a feature projecting on a point in the image from a given sensor is constrained on the line going
through the sensor center and the point in the image. With multiple images, the 3D position of the feature
is computed by intersecting the corresponding lines. Better precision is obtained for 3 views with orthogonal
directions. The sensors have to be placed such that each feature to be measured is visible in at least two images.
Visibility is a crucial criterion, but surface orientation and image resolution are also very important.

The illumination of the object can also be optimized. One can require that the part to be inspected be well
illuminated. One can maximize the contrast to make important features easily recognisable. The optimization
of viewpoint and illumination together of course leads to the best results but has a higher complexity.
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See the survey by Roberts and Marshall [RM97] and by Tarabanis et al. [TAT95]. Section 5.5 of chapter 5
and section 3 of chapter 7 deal with the computation of good viewpoints for known environment.

2.4 Good viewpoints for object exploration

Computer vision methods have been developed to acquire a 3D model of an unknown object. The choice of
the sequence of sensing operations greatly affects the quality of the results, and active vision techniques are
required.

We have already reviewed the contour intersection method. We have evoked only the theoretical limits of
the method, but an infinite number of views can not be used! The choice of the views to be used thus has to be
carefully performed as function of the already acquired data.

Another model acquisition technique uses a laser plane and a camera. The laser illuminates the object along
a plane (the laser beam is quickly rotated over time to generate a plane). A camera placed at a certain distance
of the laser records the image of the object, where the illumination by the laser is visible as a slice (see Fig.
2.12). If the geometry of the plane and camera is known, triangulation can be used to infer the coordinates of
the illuminated slice of the object. Translating the laser plane permits the acquisition of the whole model. The
data acquired with such a system are called range images, that is, an image from the camera location which
provides the depth of the points.

Two kinds of occlusion occur with these system: some part of an illuminated slice may not be visible to the
camera, and some part of the object can be hidden to the laser, as shown in Fig. 2.12.

shadow of
the camera

laser
camera

laser plane

shadow
of the laser illuminated

slice

Figure 2.12: Object acquisition using a laser plane. The laser emits a plane, and the intersection between this
plane and the object is acquired by a camera. The geometry of the slice can then be easily deduced. The laser
and camera translate to acquire the whole object. Occlusion with respect to the laser plane (in black) and to the
camera (in grey) have to be taken into account.

These problems are referred to as best-next-view or purposive viewpoint adjustment. The next viewpoint has
to be computed and optimized using the data already acquired. Previously occluded parts have to be explored.

The general problems of active vision are discussed in the report written after the 1991 Active Vision Work-
shop [AAA+92]. An overview of the corresponding visibility techniques is given in [RM97, TAT95] and they
will be discussed in section 4.5 of chapter 5.

3 Robotics

A comprehensive overview of the problems and specificities of robotics research can be found in [HKL98]. A
more geometrical point of view is exposed in [HKL97]. The book by Latombe [Lat91] gives a complete and
comprehensive presentation of motion planning techniques.
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A lot of the robotics techniques that we will discuss treat only 2D scenes. This restriction is quite under-
standable because a lot of mobile robots are only allowed to move on a 2D floorplan.

As we have seen, robotics and computer vision share a lot of topics and our classification to one or the other
specialty is sometimes arbitrary.

3.1 Motion planning

A robot has a certain number of degrees of freedom. A variable can be assigned to each degree of freedom,
defining a (usually multidimensional) configuration space. For example a two joint robot has 4 degrees of
freedom, 2 for each joint orientation. A circular robot allowed to move on a plane has two degrees of freedom
if its orientation does not have to be taken into account. Motion planning [Lat91] consists in finding a path
from a start position of the robot to a goal position, while avoiding collision with obstacles and respecting
some optional additional constraints. The optimality of this path can also be required.

The case of articulated robots is particularly involved because they move in high dimensional configuration
spaces. We are interested here in robots allowed to translate in 2D euclidean space, for which orientation is not
considered. In this case the motion planning problem resumes to the motion planning for a point, by “growing”
the obstacles using the Minkovski sum between the robot shape and the obstacles, as illustrated in Fig. 2.13.

goal

grown
obstacle

start

2D shape
of the robot

obstacle

Figure 2.13: Motion planning on a floorplan. The obstacles are grown using the Minkovski sum with the shape
of the robot. The motion planning of the robot in the non-grown scene resumes to that of its centerpoint in the
grown scene.

The relation between euclidean motion planning and visibility comes from this simple fact: A point robot
can move in straight line only to the points of the scene which are visible from it.

We will see in Section 2 of chapter 5 that one of the first global visibility data structure, the visibility graph
was developed for motion planning purposes. 5

3.2 Visibility based pursuit-evasion

Recently motion planning has been extended to the case where a robot searches for an intruder with arbitrary
motion in a known 2D environment. A mobile robot with 360 ◦ field of view explores the scene, “cleaning”
zones. A zone is cleaned when the robot sees it and can verify that no intruder is in it. It remains clean if no
intruder can go there from an uncleaned region without being seen. If all the scene is cleaned, no intruder can
have been missed. Fig. 2.14 shows an example of a robot strategy to clean a simple 2D polygon.

If the environment contains a “column” (that is topologically a hole), it can not be cleaned by a single robot
since the intruder can always hide behind the column.

Extensions to this problem include the optimization of the path of the robot, the coordination of multiple
robots, and the treatment of sensor limitations such as limited range or field of view.

5 Assembly planning is another thematic of robotics where the ways to assemble or de-assemble an object are searched [HKL98]. The
relationship between these problems and visibility would deserve exploration, especially the relation between the possibility to translate a
part and the visibility of the hole in which it has to be placed.
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(a) (b) (c)

(e) (f)(d)

Figure 2.14: The robot has to search for an unknown intruder. The part of the scene visible from the robot is in
dark grey, while the “cleaned” zone is in light grey. At no moment can an intruder go from the unknown region
to the cleaned region without being seen by the robot.

Pursuit evasion is somehow related to the art-gallery problem which we will present in section 4.3. A
technique to solve this pursuit-evasion problem will be treated in section 2.2 of chapter 7.

A related problem is the tracking of a mobile target while maintaining visibility. A target is moving in a
known 2D environment, and its motion can have different degrees of predictability (completely known motion,
bound on the velocity). A strategy is required for a mobile tracking robot such that visibility with the target is
never lost. A perfect strategy can not always be designed, and one can require that the probability to lose the
target be minimal. See section 3.3 of chapter 7.

3.3 Self-localisation

A mobile robot often has to be localised in its environment. The robot can therefore be equipped with sensor
to help it determine its position if the environment is known. Once data have been acquired, for example in the
form of a range image, the robot has to infer its position from the view of the environment as shown in Fig.
2.15. See the work by Drumheller [Dru87] for a classic method.

(a) (b)

Figure 2.15: 2D Robot localisation. (a) View from the robot. (b) Deduced location of the robot.

This problem is in fact very similar to the recognition problem studied in computer vision. The robot has to
“recognise” its view of the environment. We will see in section 2.1 of chapter 7 that the approaches developed
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are very similar.

4 Computational Geometry

The book by de Berg et al. [dBvKOS97] is a very comprehensive introduction to computational geometry.
The one by O’Rourke [O’R94] is more oriented towards implementation. More advanced topics are treated in
various books on the subject [Ede87, BY98]. Computational geometry often borrows themes from robotics.

Traditional computational geometry deals with the theoretical complexity of problems. Implementation is
not necessarily sought. Indeed some of the algorithms proposed in the literature are not implementable because
they are based on too intricate data-structures. Moreover, very good theoretical complexity sometimes hides
a very high constant, which means that the algorithm is not efficient unless the size of the input is very large.
However, recent reports [Cha96, TAA+96, LM98] and the CGAL project [FGK+96] (a robust computational
geometry library) show that the community is moving towards more applied subjects and robust and efficient
implementations.

4.1 Hidden surface removal

The problem of hidden surface removal has also been widely treated in computational geometry, for the case
of object-precision methods and polygonal scenes. It has been shown that a view can have O(n 2) complexity,
where n is the number of edges (for example if the scene is composed of rectangles which project like a grid
as shown in Fig. 2.16). Optimal O(n2) algorithms have been described [McK87], and research now focuses on
output-sensitive algorithms, where the cost of the method also depends on the complexity of the view: a hidden
surface algorithms should not spend O(n2) time if one object hides all the others.

} n
2

n
2 }

Figure 2.16: Scene composed of n rectangles which exhibits a view with complexity O(n 2): the planar map
describing the view has O(n2) segments because of the O(n2) visual intersections.

The question has been studied in various context: computation of a single view, preprocessing for multiple
view computation, and update of a view along a predetermined path.

Constraints are often imposed on the entry. Many papers deal with axis aligned rectangles, terrains or
c-oriented polygons (the number of directions of the planes of the polygons is limited).

See the thesis by de Berg [Ber93] and the survey by Dorward [Dor94] for an overview. We will survey
some computational geometry hidden-part removal methods in chapter 4 (section 2.3 and 8), chapter 5 (section
1.5) and chapter 8 (section 2.2).

4.2 Ray-shooting and lines in space

The properties and algorithms related to lines in 3D space have received a lot of attention in computational
geometry.

Many algorithms have been proposed to reduced the complexity of ray-shooting (that is, the determination
of the first object hit by a ray). Ray-shooting is often an atomic query used in computational geometry for
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hidden surface removal. Some algorithms need to compute what is the object seen behind a vertex, or behind
the visual intersection of two edges.

Work somehow related to motion planning concerns the classification of lines in space: Given a scene
composed of a set of lines, do two query lines, have the same class, i.e. can we continuously move the first
one to the other without crossing a line of the scene? This problem is related to the partition of rays or lines
according to the object they see, as will be shown in section 2.2.

Figure 2.17: Line stabbing a set of convex polygons in 3D space

Given a set of convex objects, the stabbing problems searches for a line which intersects all the objects.
Such a line is called a stabbing line or stabber or transversal (see Fig. 2.17). Stabbing is for example useful to
decide if a line of sight is possible through a sequence of doors 6.

We will not survey all the results related to lines in space; we will consider only those where the data-
structures and algorithms are of a particular interest for the comprehension of visibility problems. See chapter
8. The paper by Pellegrini [Pel97b] reviews the major results about lines in space and gives the corresponding
references.

4.3 Art galleries

In 1973, Klee raised this simple question: how many cameras are needed to guard an art gallery? Assume the
gallery is modeled by a 2D polygonal floorplan, and the camera have infinite range and 360 ◦ field of view. This
problem is known as the art gallery problem. Since then, this question has received considerable attention, and
many variants have been studied, as shown by the book by O’Rourke [O’R87] and the surveys on the domain
[She92, Urr98]. The problem has been shown to be NP-hard.

Variation on the problem include mobile guards, limited field of view, rectilinear polygons and illumination
of convex sets. The results are too numerous and most often more combinatorial than geometrical (the actual
geometry of the scene is not taken into account, only its adjacencies are) so we refer the interested reader to the
aforementioned references. We will just give a quick overview of the major results in section 3.1 of chapter 7.

The art gallery problem is related to many questions raised in vision and robotics as presented in section 2
and 3, and recently in computer graphics where the acquisition of models from photographs requires the choice
of good viewpoints as seen in section 1.7.

4.4 2D visibility graphs

Another important visibility topic in computational geometry is the computation of visibility graphs which we
will introduce in section 2. The characterisation of such graphs (given an abstract graph, is it the visibility
graph of any scene?) is also explored, but the subject is mainly combinatorial and will not be addressed in this
survey. See e.g. [Gho97, Eve90, OS97].

6Stabbing can also have an interpretation in statistics to find a linear approximation to data with imprecisions. Each data point together
with its precision interval defines a box in a multidimensional space. A stabber for these boxes is a valid linear approximation.
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5 Astronomy

5.1 Eclipses

Solar and lunar eclipse prediction can be considered as the first occlusion related techniques. However, the
main issue was focused on planet motion prediction rather than occlusion.

(a) (b)

Figure 2.18: Eclipses. (a) Lunar and Solar eclipse by Purbach. (b) Prediction of the 1715 eclipse by Halley.

Figure 2.19: 1994 solar eclipse and 1993 lunar eclipse. Photograph Copyright 1998 by Fred Espenak
(NASA/Goddard Space Flight Center).

See e.g.
http://sunearth.gsfc.nasa.gov/eclipse/eclipse.html
http://www.bdl.fr/Eclipse99

5.2 Sundials

Sundials are another example of shadow related techniques.

see e.g.
http://www.astro.indiana.edu/personnel/rberring/sundial.html
http://www.sundials.co.uk/2sundial.htm
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Figure 2.20: (a) Project of a sundial on the Place de la Concorde in Paris. (b) Complete sundial with analemmas
in front of the CICG in Grenoble.

6 Summary

Following Grant [Gra92], visibility problems can be classified according to their increasing dimensionality:
The most atomic query is ray-shooting. View and hard shadow computation are two dimensional problems.
Occlusion culling with respect to a point belong to the same category which we can refer to as classical visibility
problems. Then comes what we call global visibility issues7. These include visibility with respect to extended
regions such as extended light sources or volumes, or the computation of the region of space from which a
feature is visible. The mutual visibility of objects (required for example for global illumination simulation) is
a four dimensional problem defined on the pairs of points on surfaces of the scene. Finally the enumeration
of all possible views of an object or the optimization of a viewpoint impose the treatment of two dimensional
view computation problems for all possible viewpoints.

7Some author also define occlusion by other objects as global visibility effects as opposed to backface culling and silhouette computa-
tion.



CHAPTER 3

Preliminaries

On apprend à reconnaı̂tre les forces sous-jacentes ; on
apprends la préhistoire du visible. On apprend à fouiller
les profondeurs, on apprend à mettre à nu. On apprend
à démontrer, on apprend à analyser

Paul KLEE, Théorie de l’art moderne

EFORE presenting visibility techniques, we introduce a few notions which will be useful for
the understanding and comparison of the methods we survey. We first introduce the different
spaces which are related to visibility and which induce the classification that we will use.
We then introduce the notion of visual event, which describes “where” visibility changes in
a scene and which is central to many methods. Finally we discuss some of the differences

which explain why 3D visibility is much more involved than its 2D counterpart.

1 Spaces and algorithm classification

In their early survey Sutherland, Sproull and Schumacker [SSS74] classified hidden-part removal algorithms
into object space and image-space methods. Our terminology is however slightly different from theirs, since
they designated the precision at which the computations are performed (at the resolution of the image or exact),
while we have chosen to classify the methods we survey according to the space in which the computations are
performed.

Furthermore we introduce two new spaces: the space of all viewpoints and the space of lines. We will give
a few simple examples to illustrate what we mean by all these spaces.

1.1 Image-space

In what follow, we have classified as image-space all the methods which perform their operations in 2D pro-
jection planes (or other manifolds). As opposed to Sutherland et al.’s classification [SSS74], this plane is not
restricted to the plane of the actual image. It can be an intermediate plane. Consider the example of hard
shadow computation: an intermediate image from the point light source can be computed.

23
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Of course if the scene is two dimensional, image space has only one dimension: the angle around the
viewpoint.

Image-space methods often deal with a discrete or rasterized version of this plane, sometimes with a depth
information for each point. Image-space methods will be treated in chapter 6.

1.2 Object-space

In contrast, object space is the 3 or 2 dimensional space in which the scene is defined. For example, some hard
shadow computation methods use shadow volumes [FvDFH90, WPF90]. These volumes are truncated frusta
defined by the point light source and the occluding objects. A portion of space is in shadow if it lies inside a
shadow volume. Object-space methods will be treated in chapter 5.

1.3 Viewpoint-space

We define the viewpoint space as the set of all possible viewpoints. This space depends on the projection used.
If perspective projection is used, the viewpoint space is equivalent to the object space. However, if orthographic
(also called parallel) projection is considered, then a view is defined by a direction, and the viewpoint space
is the set S 2 of directions, often called viewing sphere as illustrated in Fig. 3.1. Its projection on a cube is
sometimes used for simpler computations.

direction of
projection

(a) (b) (c)

Figure 3.1: (a) Orthographic view. (b) Corresponding point on the viewing sphere and (c) on the viewing cube.

An example of viewpoint space method would be to discretize the viewpoint space and precompute a view
for each sample viewpoint. One could then render views very quickly with a simple look-up scheme. The
viewer-centered representation which we have introduced in section 2.1 of the previous chapter is typically a
viewpoint space approach since each possible view should be represented.

Viewpoint-space can be limited. For example, the viewer can be constrained to lie at eye level, defining a
2D viewpoint space (the plane z = heye) in 3D for perspective projection. Similarly, the distance to a point can
be fixed, inducing a spherical viewpoint-space for perspective projection.

It is important to note that even if perspective projection is used, there is a strong difference between
viewpoint space methods and object-space methods. In a viewpoint space, the properties of points are defined
by their view. An orthographic viewpoint-space could be substituted in the method.

Shadow computation methods are hard to classify: the problem can be seen as the intersection of scene
objects with shadow volume, but it can also be seen as the classification of viewpoint lying on the objects
according to their view of the source. Some of our choices can be perceived arbitrary.

In 2D, viewpoint-space has 2 dimensions for perspective projection and has 1 dimension if orthographic
projection is considered.

Viewpoint space methods will be treated in chapter 7.

1.4 Line-space

Visibility can intuitively be defined in terms of lines: two point A and B are mutually visible if no object
intersects line (AB) between them. It is thus natural to describe visibility problems in line space.
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For example, one can precompute the list of objects which intersect each line of a discretization of line-
space to speed-up ray-casting queries.

In 2D, lines have 2 dimensions: for example its direction θ and distance to the origin ρ. In 3D however, lines
have 4 dimensions. They can for example be parameterized by their direction (θ,ϕ) and by the intersection
(u,v) on an orthogonal plane (Fig. 3.2(a)). They can also be parameterized by their intersection with two planes
(Fig. 3.2(b)). These two parameterizations have some singularities (at the pole for the first one, and for lines
parallel to the two planes in the second). Lines in 3D space can not be parameterized without a singularity. In
section 3 of chapter 8 we will study a way to cope with this, embedding lines in a 5 dimensional space.

θ
u

v
D

y

x

z

t
ϕ

(s,t) (u,v)

(a) (b)

Figure 3.2: Line parameterisation. (a) Using two angles and the intersection on an orthogonal plane. (b) Using
the intersection with two planes.

The set of lines going through a point describe the view from this point, as in the ray-tracing technique (see
Fig. 2.5). In 2D the set of lines going through a point has one dimension: for example their angle. In 3D, 2
parameters are necessary to describe a line going through a point, for example two angles.

Many visibility queries are expressed in terms of rays and not lines. The ray-shooting query computes
the first object seen from a point in a given direction. Mathematically, a ray is a half line. Ray-space has 5
dimensions (3 for the origin and two for the direction).

The mutual visibility query can be better expressed in terms of segments. A and B are mutually visible only
if segment [AB] intersects no object. Segment space has 6 dimensions: 3 for each endpoint.

The information expressed in terms of rays or segments is very redundant: many colinear rays “see” the
same object, many colinear segments are intersected by the same object. We will see that the notion of maximal
free segments handles this. Maximal free segments are segments of maximal length which do not touch the
objects of the scene in their interior. Intuitively these are segments which touch objects only at their extremities.

We have decided to group the methods which deal with these spaces in chapter 8. The interested reader will
find some important notions about line space reviewed in appendix 11.

1.5 Discussion

Some of the methods we survey do not perform all their computations in a single space. An intermediate
data-structure can be used, and then projected in the space in which the final result is required.

Even though each method is easier to describe in a given space, it can often be described in a different space.
Expressing a problem or a method in different spaces is particularly interesting because it allows different
insights and can yield alternative methods. We particularly invite the reader to transpose visibility questions to
line space or ray space. We will show throughout this survey that visibility has a very natural interpretation in
line space.

However this is not an incitation to actually perform complex calculations in 4D line space. We just suggest
a different way to understand problems and develop methods, even if calculations are eventually performed in
image or object space.
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2 Visual events, singularities

We now introduce a notion which is central to most of the algorithms, and which expresses “how” and “where”
visibility changes. We then present the mathematical framework which formalizes this notion, the theory of
singularities. The reader may be surprised by the space devoted in this survey to singularity theory compared
to its use in the literature. We however believe that singularity theory permits a better insight on visibility
problems, and allows one to generalize some results on polygonal scenes to smooth objects.

2.1 Visual events

Consider the example represented in Fig. 3.3. A polygonal scene is represented, and the views from three
eyepoints are shown on the right. As the eyepoint moves downwards, pyramid P becomes completely hidden
by polygon Q. The limit eyepoint is eyepoint 2, for which vertex V projects exactly on edge E. There is a
topological change in visibility: it is called a visual event or a visibility event.

V

E 1

2

3
P

Q

E

V

Figure 3.3: EV visual event. The views from the three eyepoints are represented on the right. As the eyepoint
moves downwards, vertex V becomes hidden. Viewpoint 2 is the limit eyepoint, it lies on a visual event.

Visual events are fundamental to understand many visibility problems and techniques. For example when
an observer moves through a scene, objects appear and disappear at such events (Fig. 3.3). If pyramid P emits
light, then eyepoint 1 is in penumbra while eyepoint 3 is in umbra: the visual event is a shadow boundary. If a
viewpoint is sought from which pyramid P is visible, then the visual event is a limit of the possible solutions.
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(a) (b) (c)

Figure 3.4: Locus an EV visual event. (a) In object space or perspective viewpoint space it is a wedge. (b) In
orthographic viewpoint space it is an arc of a great circle. (c) In line space it is the 1D set of lines going through
V and E

Fig. 3.4 shows the locus of this visual event in the spaces we have presented in the previous section. In
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object space or in perspective viewpoint space, it is the wedge defined by vertex V and edge E. We say that
V and E are the generators of the event. In orthographic viewpoint space it is an arc of a great circle of the
viewing sphere. Finally, in line-space it is the set of lines going through V and E. These critical lines have one
degree of freedom since they can be parameterized by their intercept on E, we say that it is a 1D set of lines.

The EV events generated by a vertex V are caused by the edges which are visible from V . The set of events
generated by V thus describe the view from V . Reciprocally, a line drawing of a view from an arbitrary point P
can be seen as the set of EV events which would be generated if an imaginary vertex was place at P.
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Figure 3.5: A EEE visual event. The views from the three eyepoints are represented on the right. As the
eyepoint moves downwards, polygon R becomes hidden by the conjunction of polygon P and Q. From the
limit viewpoint 2, the three edges have a visual intersection.

There is also a slightly more complex kind of visual event in polygonal scenes. It involves the interaction of
3 edges which project on the same point (Fig. 3.5). When the eyepoint moves downwards, polygon P becomes
hidden by the conjunction of Q and R. From the limit eyepoint 2, edges E P, EQ and ER are aligned.
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Figure 3.6: Locus of a EEE visual event. (a) In object-space or perspective viewpoint space it is a ruled quadrics.
(b) In orthographic viewpoint space it is a quadric on the viewing sphere. (c) In line space it is the set of lines
stabbing the three edges.

The locus of such events in line space is the set of lines going through the three edges (we also say that
they stab the three edges) as shown on Fig. 3.6(c). In object space or perspective viewpoint space, this defines
a ruled quadric often called swath (Fig. 3.6(a)). (It is in fact doubly ruled: the three edges define one family of
lines, the stabber defining the second.) In orthographic viewpoint space it is a quadric on the viewing sphere
(see Fig. 3.6(b)).

Finally, a simpler class of visual events are caused by a viewpoint lying in the plane of faces of the scene.
The face becomes visible or hidden at such an event.

Visual events are simpler in 2D: they are simply the bitangents and inflexion pointsof the scene.
A deeper understanding of visual events and their generalisation to smooth objects requires a strong for-

malism: it is provided by the singularity theory.
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2.2 Singularity theory

The singularity theory studies the emergence of discrete structures from smooth continuous ones. The branch
we are interested in has been developed mainly by Whitney [Whi55], Thom [Tho56, Tho72] and Arnold
[Arn69]. It permits the study of sudden events (called catastrophes) in systems governed by smooth con-
tinuous laws. An introduction to singularity theory for visibility can be found in the masters thesis by PetitJean
[Pet92] and an educational comics has been written by Ian Stewart [Ste82]. See also the book by Koenderink
[Koe90] or his papers with van Doorn [Kv76, KvD82, Kø84, Koe87].

We are interested in the singularities of smooth mappings. For example a view projection is a smooth
mapping which associate each point of 3D space to a point on a projection plane. First of all, singularity theory
permits the description the structure of the visible parts of a smooth object.

cusp t-vertex

fold

(a) (b)

cusp t-vertex

fold

(c)

Figure 3.7: View of a torus. (a) Shaded view. (b) Line drawing with singularities indicated (b) Opaque and
transparent contour.

Consider the example of a smooth 3D object such as the torus represented in Fig. 3.7(a). Its projection
on a viewing plane is continuous nearly everywhere. However, some abrupt changes appear at the so called
silhouette. Consider the number of point of the surface of the object projecting on a given point on the projection
plane (counting the backfacing points). On the exterior of the silhouette no point is projected. In the interior
two points (or more) project on the same point. These two regions are separated by the silhouette of the object
at which the number of projected point changes abruptly.

This abrupt change in the smooth mapping is called a singularity or catastrophe or bifurcation. The singu-
larity corresponding to the silhouette was named fold (or also occluding contour or limb). The fold is usually
used to make a line drawing of the object as in Fig. 3.7(b). It corresponds to the set of points which are tangent
to the viewing direction1.

The fold is the only stable curve singularity for generic surfaces: if we move the viewpoint, there will
always be a similar fold.

The projection in Fig. 3.7 also exhibits two point singularities: a t-vertex and a cusp. T-vertices results from
the intersection of two folds. Fig. 3.7(c) shows that a fourth fold branch is hidden behind the surface. Cusps
represent the visual end of folds. In fact, a cusp corresponds to a point where the fold has an inflexion in 3D
space. A second tangent fold is hidden behind the surface as illustrated in Fig. 3.7(c).

These are the only three stable singularities: all other singularities disappear after a small perturbation of
the viewpoint (if the object is generic, which is not the case of polyhedral objects). These stable singularities
describe the limits of the visible parts of the object. Malik [Mal87] has established a catalogue of the features
of line drawings of curved objects.

Singularity theory also permits the description of how the line drawing changes as the viewpoint is moved.
Consider the example represented in Fig. 3.8. As the viewpoint moves downwards, the back sphere becomes
hidden by the front one. From viewpoint (b) where this visual event occurs, the folds of the two spheres are
superimposed and tangent. This unstable singularity is called a tangent crossing. It is very similar to the EV
visual event shown in Fig. 3.3. It is unstable in the sense that any small change in the viewpoint will make it
disappear. The viewpoint is not generic, it is accidental.

1What is the relationship between the view of a torus and the occurrence of a sudden catastrophe? Imagine the projection plane is the
command space of a physical system with two parameters x and y. The torus is the response surface: for a pair of parameters (x,y) the
depth z represents the state of the system. Note that for a pair of parameters, there may be many possible states, depending on the history of
the system. When the command parameters vary smoothly, the corresponding state varies smoothly on the surface of the torus. However,
when a fold is met, there is an abrupt change in the state of the system, this is a catastrophe. See e.g. [Ste82].
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(a) (b) (c)

Figure 3.8: Tangent crossing singularity. As the viewpoint moves downwards, the back sphere becomes hidden
by the frontmost one. At viewpoint (b) a singularity occurs (highlighted with a point): the two spheres are
visually tangent.
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Figure 3.9: Disappearance of a cusp at a swallowtail singularity at viewpoint (b). (in fact two swallowtails occur
because of the symmetry of the torus)

Another unstable singularity is shown in Fig. 3.9. As the viewpoints moves upward, the t-vertex and the
cusp disappear. In Fig. 3.9(a) the points of the plane below the cusp result from the projection of 4 points of
the torus, while in Fig. 3.9(c) all points result from the projection of 2 or 0 points. This unstable singularity is
called swallowtail.

Unstable singularities are the events at which the organisation of the view of a smooth object (or scene) is
changed. These singularities are related to the differential properties of the surface. For example swallowtails
occur only in hyperbolic regions of the surface, that is, regions where the surface is locally nor concave nor
convex.

Singularity theory originally does not consider opaqueness. Objects are assumed transparent. As we have
seen, at cusps and t-vertices, some fold branches are hidden. Moreover a singularity like a tangent crossing is
considered even if some objects lie between the two sphere causing occlusion. The visible singularity are only
a subset but all the changes observed in views of opaque objects can be described by singularity theory. Some
catalogues now exist which describe singularities of opaque objects 2. See Fig. 3.10.

The catalogue of singularities for views of smooth objects has been proposed by Kergosien [Ker81] and
Rieger [Rie87, Rie90] who has also proposed a classification for piecewise smooth objects [Rie87] 3.

3 2D versus 3D Visibility

We enumerate here some points which make that the difference between 2D and 3D visibility can not be
summarized by a simple increment of one to the dimension of the problem.

This can be more easily envisioned in line space. Recall that the atomic queries in visibility are expressed
in line-space (first point seen along a ray, are two points mutually visible?).

2Williams [WH96, Wil96] tries to fill in the gap between opaque and transparent singularities. Given the view of an object, he proposes
to deduce the invisible singularities from the visible ones. For example at a t-vertex, two folds intersect but only three branches are visible;
the fourth one which is occluded can be deduced. See Fig. 3.10.

3Those interested in the problems of robustness and degeneracies for geometric computations may also notice that a degenerate config-
uration can be seen as a singularity of the space of scenes. The exploration of the relations between singularities and degeneracies could
help formalize and systemize the treatment of the latter. See also section 2 of chapter 9.
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Figure 3.10: Opaque (bold lines) and semi-transparent (grey) singularities. After [Wil96].

First of all, the increase in dimension of line-space is two, not one (in 2D line-space is 2D, while in 3D it is
4D). This makes things much more intricate and hard to apprehend.

A line is a hyperplane in 2D, which is no more the case in 3D. Thus the separability property is lost: a 3D
line does not separate two half-space as in 2D.

A 4D parameterization of 3D lines is not possible without singularities (the one presented in Fig. 3.2(a) has
two singularities at the pole, while the one in Fig. 3.2(b) can not represent lines parallel to the two planes). See
section 3 of chapter 8 for a partial solution to this problem.

Visual events are simple in 2D: bitangent lines or tangent to inflection points. In 3D their locus are surfaces
which are rarely planar (EEE or visual events for curved objects).

All these arguments make the sentence “the generalization to 3D is straightforward” a doubtful statement
in any visibility paper.



CHAPTER 4

The classics of hidden part removal

Il convient encore de noter que c’est parce que quelque
chose des objets extérieurs pénétre en nous que nous
voyons les formes et que nous pensons

ÉPICURE, Doctrines et Maximes

E FIRST BRIEFLY review the classical algorithms to solve the hidden surface removal
problem. It is important to have these techniques in mind for a wider insight of visibility
techniques. We will however remain brief, since it is beyond the scope of this survey to
discuss all the technical details and variations of these algorithms. For a longer survey
see [SSS74, Gra92], and for a longer and more educational introduction see [FvDFH90,

Rog97].

The view computation problem is often reduced to the case where the viewpoint lies on the z axis at infinity,
and x and y are the coordinates of the image plane; y is the vertical axis of the image. This can be done using
a perspective transform matrix (see [FvDFH90, Rog97]). The objects closer to the viewpoint can thus be said
to lie “above” (because of the z axis) as well as “in front” of the others. Most of the methods treat polygonal
scenes.

Two categories of approaches have been distinguished by Sutherland et al. Image-precision algorithms
solve the problem for a discrete (rasterized) image, visibility being sampled only at pixels; while object-
precision algorithm solve the exact problem. The output of the latter category is often a visibility map, which
is the planar map describing the view. The order in which we present the methods is not chronological and has
been chosen for easier comparison.

Solutions to hidden surface removal have other applications that the strict determination of the objects
visible from the viewpoint. As evoked earlier, hard shadows can be computed using a view from a point light
source. Inversely, the amount of light arriving at a point in penumbra corresponds to the visible part of the
source from this point as shown in Fig. 2.2(b). Interest for the application of exact view computation has thus
recently been revived.

31
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1 Hidden-Line Removal

The first visibility techniques have were developed for hidden line removal in the sixties. These algorithms
provide information only on the visibility of edges. Nothing is known on the interior of visible faces, preventing
shading of the objects.

1.1 Robert

Robert [Rob63] developed the first solution to the hidden line problem. He tests all the edges of the scene
polygons for occlusion. He then computes the intersection of the wedge defined by the viewpoint and the edge
and all objects in the scene using a parametric approach.

1.2 Appel

Appel [App67] has developed the notion of quantitative invisibility which is the number of objects which
occlude a given point. This is the notion which we used to present singularity theory: the number of points of
the object which project on a given point in the image. Visible points are those with 0 quantitative invisibility.
The quantitative invisibility of an edge of a view changes only when it crosses the projection of another edge
(it corresponds to a t-vertex). Appel thus computes the quantitative invisibility number of a vertex, and updates
the quantitative invisibility at each visual edge-edge intersection.

Markosian et al. [MKT+97] have used this algorithm to render the silhouette of objects in a non-photorealistic
manner. When the viewpoint is moved, they use a probabilistic approach to detect new silhouettes which could
appear because an unstable singularity is crossed.

1.3 Curved objects

Curved objects are harder to handle because their silhouette (or fold) first has to be computed (see section 2.2 of
chapter 3). Elber and Cohen [EC90] compute the silhouette using adaptive subdivision of parametric surfaces.
The surface is recursively subdivided as long as it may contain parts of the silhouette. An algorithm similar
to Appel’s method is then used. Snyder [Sny92] proposes the use of interval arithmetic for robust silhouette
computation.

2 Exact area-subdivision

2.1 Weiler-Atherton

Weiler and Atherton [WA77] developed the first object-precision method to compute a visibility map. Objects
are preferably sorted according to their depth (but cycles do not have to be handled). The frontmost polygons
are then used to clip the polygons behind them.

This method can also be very simply used for hard shadow generation, as shown by Atherton et al.
[AWG78]. A view is computed from the point light source, and the clipped polygons are added to the scene
database as lit polygon parts.

The problem with Weiler and Atherton’s method, as for most of the object-precision methods, is that it
requires robust geometric calculations. It is thus prone to numerical precision and degeneracy problems.

2.2 Application to form factors

Nishita and Nakamae [NN85] and Baum et al. [BRW89] compute an accurate form factor between a polygon
and a point (the portion of light leaving the polygon which arrives at the point) using Weiler and Atherton’s
clipping. Once the source polygon is clipped, an analytical formula can be used. Using Stoke’s theorem, the
integral over the polygon is computed by an integration over the contour of the visible part. The jacobian of
the lighting function can be computed in a similar manner [Arv94].

Vedel [Ved93] has proposed an approximation for the case of curved objects.
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2.3 Mulmuley

Mulmuley [Mul89] has proposed an improvement of exact area-subdivision methods. He inserts polygons
in a randomized order (as in quick-sort) and maintains the visibility map. Since visibility maps can have
complex boundaries (concave, with holes), he uses a trapezoidal decomposition [dBvKOS97]. Each trapezoid
corresponds to a part of one (possibly temporary) visible face.

Each trapezoid of the map maintains a list of conflict polygons, that is, polygons which have not yet been
projected and which are above the face of the trapezoid. As a face is chosen for projection, all trapezoids with
which it is in conflict are updated. If a face is below the temporary visible scene, no computation has to be
performed.

The complexity of this algorithm is very good, since the probability of a feature (vertex, part of edge) to
induce computation is inversely proportional to its quantitative invisibility (the number of objects above it). It
should be easy to implement and robust due to its randomized nature. However, no implementation has been
reported to our knowledge.

2.4 Curved objects

Krishnan and Manocha [KM94] propose an adaptation of Weiler and Atherton’s method for curved objects
modeled with NURBS surfaces. They perform their computation in the parameter space of the surface. The
silhouette corresponds to the points where the normal is orthogonal to the view-line, which defines a polynomial
system. They use an algebraic marching method to solve it. These silhouettes are approximated by piecewise-
linear curves and then projected on the parts of the surface below, which gives a partition of the surface where
the quantitative invisibility is constant.

3 Adaptive subdivision

The method developed by Warnock [War69] can be seen as an approximation of Weiler and Atherton’s exact
method, even though it was developed earlier. It recursively subdivides the image until each region (called a
window) is declared homogeneous. A window is declared homogeneous if one face completely covers it and
is in front of all other faces. Faces are classified against a window as intersecting or disjoint or surrounding
(covering). This classification is passed to the subwindows during the recursion. The recursion is also stopped
when pixel-size is reached.

The classical method considers quadtree subdivision. Variations however exist which use the vertices of
the scene to guide the subdivision and which stop the recursion when only one edge covers the window.

Marks et al. [MWCF90] presents an analysis of the cost of adaptive subdivision and proposes a heuristic to
switch between adaptive methods and brute-force z-buffer.

4 Depth order and the painter’s algorithm

The painter’s algorithm is a class of methods which consist in simply drawing the objects of the scene from
back to front. This way, visible objects overwrite the hidden ones. This is similar to a painter who first draws
a background then paints the foreground onto it. However, ordering objects according to their occlusion is not
straightforward. Cycles may appear, as illustrated in Fig. 4.1(a).

The inverse order (Front to Back) can also be used, but a flag has to be indicate whether a pixel has been
written or not. This order allows shading computations only for the visible pixels.

4.1 Newell Newell and Sancha

In the method by Newell, Newell and Sancha [NNS72] polygons are first sorted according to their minimum z
value. However this order may not be the occlusion order. A bubble sort like scheme is thus applied. Polygons
with overlapping z intervals are first compared in the image for xy overlap. If it is the case, their plane equation
is used to test which occlude which. Cycles in occlusion are tested, in which case one of the polygons is split
as shown in Fig. 4.1(b).
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(a) (b)
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Figure 4.1: (a) Classic example of a cycle in depth order. (b) Newell, Newell and Sancha split one of the
polygons to break the cycle.

For new theoretical results on the problem of depth order, see the thesis by de Berg [Ber93].

4.2 Priority list preprocessing

Schumacker [SBGS69] developed the concept of a priori depth order. An object is preprocessed and an order
may be found which is valid from any viewpoint (if the backfacing faces are removed). See the example of Fig.
4.2.
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Figure 4.2: A priori depth order. (a) Lower number indicate higher priorities. (b) Graph of possible occlusions
from any viewpoint. An arrow means that a face can occlude another one from a viewpoint. (c) Example of
a view. Backfacing polygons are eliminated and other faces are drawn in the a priori order (faces with higher
numbers are drawn first).

These objects are then organised in clusters which are themselves depth-ordered. This technique is funda-
mental for flight simulators where real-time display is crucial and where cluttered scenes are rare. Moreover,
antialiasing is easier with list-priority methods because the coverage of a pixel can be maintained more consis-
tently. The survey by Yan [Yan85] states that in 1985, all simulators were using depth order. It is only very
recent that z-buffer has started to be used for flight simulators (see section below).

However, few objects can be a priori ordered, and the design of a suitable database had to be performed
mainly by hand. Nevertheless, this work has led to the development of the BSP tree which we will present in
section 1.4 of chapter 5

4.3 Layer ordering for image-based rendering

Recently, the organisation of scenes into layers for image-based rendering has revived the interest in depth-
ordering à la Newell et al. Snyder and Lengyel [SL98] proposed the merging of layers which form an occlusion
cycle, while Decoret al. [DSSD99] try to group layers which cannot have occlusion relations to obtain better
parallax effects.
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5 The z-buffer

5.1 Z-buffer

The z-buffer was developed by Catmull [Cat74, Cat75]. It is now the most widespread view computation
method.

A depth (or z-value) is stored for each pixel of the image. As each object is scan-converted (or rasterized),
the depth of each pixel it covers in the image is computed and compared against the corresponding current
z-value. The pixel is drawn only if it is closer to the viewpoint.

Z-buffer was developed to handle curved surfaces, which are recursively subdivided until a sub-patch covers
only one pixel. See also [CLR80] for improvements.

The z-buffer is simple, general and robust. The availability of cheap and fast memory has permitted very
efficient hardware implementations at low costs, allowing today’s low-end computer to render thousands of
shaded polygons in real-time. However, due to the rasterized nature of the produced image, aliasing artifacts
occur.

5.2 A-buffer

The A-buffer (antialiased averaged area accumulation buffer) is a high quality antialiased version of the z-buffer.
A similar rasterization scheme is used. However, if a pixel is not completely covered by an object (typically
at edges) a different treatment is performed. The list of object fragments which project on these non-simple
pixels is stored instead of a color value (see Fig. 4.3). A pixel can be first classified non simple because an edge
projects on it, then simple because a closer object completely covers it. Once all objects have been projected,
sub-pixel visibility is evaluated for non-simple pixels. 4*8 subpixels are usually used. Another advantage of
the A-buffer is its treatment of transparency; Subpixel fragments can be sorted in front-to-back order for correct
transparency computations.

(e)

(b)

(a)

(c)

(d)

Figure 4.3: A buffer. (a) The objects are scan-converted. The projection of the objects is dashed and non-simple
pixels are represented in bold. (b) Close-up of a non-simple pixel with the depth sorted fragments (i.e., the
polygons clipped to the pixel boundary). (c) The pixel is subsampled. (d) The resulting color is the average of
the subsamples. (e) Resulting antialiased image.

The A-buffer can be credited to Carpenter [Car84], and Fiume et al. [FFR83]. It is a simplification of
the “ultimate” algorithm by Catmull [Cat78] which used exact sub-pixel visibility (with a Weiler-Atherton
clipping) instead of sub-sampling. A comprehensive introduction to the A-buffer and a discussion of imple-
mentation is given in the book by Watt and Watt [WW92].
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The A-buffer is, with ray-tracing, the most popular high-quality rendering techniques. It is for example
implemented in the commercial products Alias Wavefront Maya and Pixar Renderman [CCC87]. Similar
techniques are apparently present in the hardware of some recent flight simulator systems [Mue95].

Most of the image space methods we present in chapter 6 are based on the z-buffer. A-buffer-like schemes
could be explored when aliasing is too undesirable.

6 Scan-line

6.1 Scan-line rendering

Scan-line approaches produce rasterized images and consider one line of the image at a time. Their memory re-
quirements are low, which explains why they have long been very popular. Wylie and his coauthors [WREE67]
proposed the first scan-line algorithms, and Bouknight [Bou70] and Watkins [Wat70] then proposed very simi-
lar methods.

The objects are sorted according to y. For each scan-line, the objects are then sorted according to x. Then
for each span (x interval on which the same objects project) the depths of the polygons are compared. See
[WC91] for a discussion of efficient implementation. Another approach is to use a z-buffer for the current
scan-line. The A-buffer [Car84] was in fact originally developed in a scan-line system.

Crocker [Cro84] has improved this method to take better advantage of coherence.
Scan-line algorithms have been extended to handle curved objects. Some methods [Cla79, LC79, LCWB80]

use a subdivision scheme similar to Catmull’s algorithm presented in the previous section while others [Bli78,
Whi78, SZ89] actually compute the intersection of the surface with the current scan-line. See also [Rog97]
page 417.

Sechrest and Greenberg [SG82] have extended the scanline method to compute object precision (exact)
views. They place scan-lines at each vertex or edge-edge intersection in the image.

Tanaka and Takahashi [TT90] have proposed an antialiased version of the scan-line method where the
image is scanned both in x and y. An adaptive scan is used in-between two y scan-lines. They have applied this
scheme to soft shadow computation [TT97] (see also section 1.4 of chapter 8).

6.2 Shadows

The first shadowing methods were incorporated in a scan-line process as suggested by Appel [App68]. For
each span (segment where the same polygon is visible) of the scan-line, its shadowing has to be computed.
The wedge defined by the span and a point light-source is intersected with the other polygons of the scene to
determine the shadowed part of the span.

In section 1.1 of chapter 6 we will see an improvement to this method. Other shadowing techniques for
scan-line rendering will be covered in section 4.1 of chapter 5.

7 Ray-casting

The computation of visible objects using ray-casting was pioneered by Appel [App68], the Mathematical Ap-
plication Group Inc. [MAG68] and Goldstein and Nagel [GN71] in the late sixties. The object visible at one
pixel is determined by casting a ray through the scene. The ray is intersected with all objects. The closest
intersection gives the visible object. Shadow rays are used to shade the objects. As for the z-buffer, Sutherland
et al. [SSS74] considered this approach brute force and thought it was not scalable. They are now the two most
popular methods.

As evoked in section 1.5 of chapter 2 Whitted [Whi80] and Kay [KG79] have extended ray-casting to
ray-tracing which treats transparency and reflection by recursively sending secondary rays from the visible
points.

Ray tracing can handle any type of geometry (as soon as an intersection can be computed). Various methods
have been developed to compute ray-surface intersections, e.g., [Kaj82, Han89].

Ray-tracing is the most versatile rendering technique since it can also render any shading effect. Antialias-
ing can be performed with subsampling: many rays are sent through a pixel (see e.g. [DW85, Mit87]).
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Ray-casting and ray-tracing send rays from the eye to the scene, which is the opposite of actual physical
light propagation. However, this corresponds to the theory of scientists such as Aristote who think that “visual
rays” go from the eye to the visible objects.

As observed by Hofmann [Hof92] and illustrated in Fig. 4.4 ideas similar to ray-casting were exposed by
Dürer [Dür38] while he was presenting perspective.

Figure 4.4: Drawing by Dürer in 1538 to illustrate his setting to compute perspective. It can be thought of as
an ancestor of ray-casting. The artist’s assistant is holding a stick linked to a string fixed at an eyebolt in the
wall which represents the viewpoint. He points to part of the object. The position of the string in the frames is
marked by the artist using the intersection of two strings fixed to the frame. He then rotates the painting and
draws the point.

8 Sweep of the visibility map

Most of the algorithms developed in computational geometry to solve the hidden part removal problem are
based on a sweep of the visibility map for polygonal scenes. The idea is illustrated in Fig. 4.5. The view is
swept by a vertical (not necessarily straight) line, and computations are performed only at discrete steps often
called events. A list of active edges (those crossing the sweep line) is maintained and updated at each events.
Possible events are the appearance the vertex of a new polygon, or a t-vertex, that is, the visual intersection of
an active edge and another edge (possibly not active).

The problem then reduces to the efficient detection of these events and the maintenance of the active edges.
As evoked in the introduction this often involves some ray shooting queries (to detect which face becomes
visible at a t-vertex for example). More complex queries are required to detect some t-vertices.

The literature on this subject is vast and well surveyed in the paper by Dorward [Dor94]. See also the thesis
by de Berg [Ber93]. Other recent results on the subject include [Mul91, Pel96] (see section 1.5 of chapter 5).
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Figure 4.5: Sweep of a visibility map. Active edges are in bold. Already processed events are black points,
while white points indicate the event queue.



CHAPTER 5

Object-Space

Ombres sans nombre
nombres sans ombre

à l’infini
au pas cadencé

Nombres des ombres
ombre des nombres

à l’infini
au pas commencé

Jacques PRÉVERT, Fatras

BJECT-SPACE methods exhibit the widest range of approaches. We first introduce methods
which optimize visibility computation by using a well-behaved subdivision of space. We
then present two important data-structures based on the object-space locus of visual events,
the 2D visibility graph (section 2) and visual hull (section 3). We then survey the large class
of methods which characterize visibility using pyramid-like shapes. We review methods

using beams for visibility with respect to a point in section 4. We then present the extensions of these methods
to compute limits of umbra and penumbra in section 5, while section 6 discusses methods using shafts with
respect to volumes. Finally section 7 surveys methods developed for visibility in architectural environments
where visibility information is propagated through sequences of openings.

1 Space partitioning

If all objects are convex, simple, well structured and aligned, visibility computations are much easier. This
is why some methods attempt to fit the scene into simple enclosing volumes or regular spatial-subdivisions.
Computations are simpler, occlusion cycles can no longer occur and depth ordering is easy.

39
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1.1 Ray-tracing acceleration using a hierarchy of bounding volumes

Intersecting a ray with all objects is very costly. Whitted [Whi80] enclosed objects in bounding volumes for
which the intersection can be efficiently computed (spheres in his paper). If the ray does not intersect the
bounding volume, it cannot intersect the object.

Rubin and Whitted [RW80] then extended this idea with hierarchies of bounding volumes, enclosing bound-
ing volumes in a hierarchy of successive bounding volumes. The trade-off between how the bounding volumes
fits the object and the cost of the intersection has been studied by Weghorst et al. [WHG84] using a probabilis-
tic approach based on surface ratios (see also section 4 of chapter 8). Kay and Kajiya [KK86] built tight-fitting
bounding volumes which approximate the convex hull of the object by the intersection of parallel slabs.

The drawback of standard bounding volume methods, is that all objects intersecting the rays have to be
tested. Kay and Kajiya [KK86] thus propose an efficient method for a traversal of the hierarchy which first tests
the closest bounding volumes and terminates when an intersection is found which is closer than the remaining
bounding volumes.

Many other methods were proposed to improve bounding volume methods for ray-tracing, see e.g. [Bou85,
AK89, FvDFH90, Rog97, WW92]. See also [Smi99] for efficiency issues.

1.2 Ray-tracing acceleration using a spatial subdivision

The alternative to bounding volumes for ray-tracing is the use of a structured spatial subdivision. Objects
of the scene are classified against voxels (boxes), and shooting a ray consists in traversing the voxels of the
subdivision and performing intersections only for the objects inside the encountered voxels. An object can lie
inside many voxels, so this has to be taken into account.

The trade-off here is between the simplicity of the subdivision traversal, the size of the structure and the
number of objects per voxel.

Regular grids have been proposed by Fujimoto et al. [FTI86] and Amanatides and Woo [AW87]. The
drawback of regular grids is that regions of high object density are “sampled” at the same rate as regions with
many objects, resulting in a high cost for the latter because one voxel may contain many objects. However the
traversal of the grid is very fast, similar to the rasterization of a line on a bitmap image. To avoid the time spent
in traversing empty regions of the grid, the distance to the closest object can be stored at each voxel (see e.g.
[CS94, SK97]).

Glassner [Gla84] introduced the use of octrees which result in smaller voxels in regions of high object
density. Unfortunately the traversal of the structure becomes more costly because of the cost induced by the
hierarchy of the octree. See [ES94] for a comparison between octrees and regular grids.

Recursive grids [JW89, KS97] are similar to octrees, except that the branching factor may be higher, which
reduces the depth of the hierarchy (see Fig. 5.1(a)). The size of the voxel in a grid or sub-grid should be
proportional to the cubic root of the number of objects to obtain a uniform density.

Snyder and Bar [SB87] use tight fitting regular grids for complex tessellated objects which they insert in a
bounding box hierarchy.

Finally Cazals et al. [CDP95, CP97] propose the Hierarchy of Uniform Grids, where grids are not nested.
Objects are sorted according to their size. Objects which are close and have the same size are clustered, and a
grid is used for each cluster and inserted in a higher level grid (see Fig. 5.1(b)). An in-depth analysis of the
performance of spatial subdivision methods is presented. Recursive grids and the hierarchy of uniform grid
seem to be the best trade-off at the moment (see also [KWCH97, Woo97] for a discussion on this subject).

1.3 Volumetric visibility

The methods in the previous sections still require an intersection calculations for each object inside a voxel.
In the context of radiosity lighting simulation, Sillion [Sil95] approximates visibility inside a voxel by an
attenuation factor (transparency or transmittance) as is done for volume rendering. A multiresolution extension
was presented [SD95] and will be discussed in section 1.2 of chapter 9.

The transmittance is evaluated using the area of the objects inside a voxel. These voxels (or clusters) are
organised in a hierarchy. Choosing the level of the hierarchy used to compute the attenuation along a ray allows
a trade-off between accuracy and time. The problem of refinement criteria will be discussed in section 1.1 of
chapter 9.
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(a) (b)

Figure 5.1: A 2D analogy of ray-tracing acceleration. An intersection test is performed for objects which are in
bold type. (a) Recursive grid. (b) Hierarchy of uniform grids. Note that fewer intersections are computed with
the latter because the grids fit more tightly to the geometry.

Christensen et al. [CLSS97] propose another application of volumetric visibility for radiosity.
Chamberlain et al [CDL+96] perform real-time rendering by replacing distant geometry by semi-transparent

regular voxels averaging the color and occlusion of their content. Neyret [Ney96, Ney98] presents similar ideas
to model and render complex scenes with hierarchical volumetric representations called texels.

1.4 BSP trees

We have seen in section 4.2 of chapter 4 that an a priori depth order can be found for some objects. Unfortu-
nately, this is quite rare. Fuchs and his co authors [FKN80, FAG83] have developed the BSP tree (Binary Space
Partitioning tree) to overcome this limitation.

The principle is simple: if the scene can be separated by a plane, the objects lying on the same side of the
plane as the viewer are closer than the others in a depth order. BSP trees recursively subdivide the scene along
planes, resulting in a binary tree where each node corresponds to a splitting plane. The computation of a depth
order is then a straightforward tree traversal: at each node the order in which the subtrees have to be drawn is
determined by the side of the plane of the viewer. Unfortunately, since a scene is rarely separable by a plane,
objects have to be split. Standard BSP approaches perform subdivision along the polygons of the scene. See
Fig. 5.2 for an example1.

It has been shown [PY90] that the split in BSP trees can cause the number of sub-polygons to be as high as
O(n3) for a scene composed of n entry polygons. However, the choice of the order of the polygons with which
subdivision is performed is very important. Paterson and Yao [PY90] give a method which builds a BSP tree
with size O(n2). Unfortunately, it requires O(n3) time. However these bounds do not say much on the practical
behaviour of BSPs.

See e.g. [NR95] for the treatment of curved objects.
Agarwal et al. [AGMV97, AEG98] do not perform subdivision along polygons. They build cylindrical

BSP trees, by performing the subdivision along vertical planes going through edges of the scene (in a way
similar to the method presented in the next section). They give algorithms which build a quadratic size BSP in
roughly quadratic time.

Chen and Wang [CW96] have proposed the feudal priority algorithm which limits the number of splits
compared to BSP. They first treat polygons which are back or front-facing from any other polygon, and then
chose the polygons which cause the smallest number of splits.

1 BSP trees have also been applied as a modeling representation tool and powerful Constructive Solid Geometry operations have been
adapted by Naylor et al. [NAT90].
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Figure 5.2: 2D BSP tree. (a) The scene is recursively subdivided along the polygons. Note that polygon D has
to be split. (b) Corresponding binary tree. The traversal order for the viewpoint in (a) is depicted using arrows.
The order is thus, from back to front: FCGAD1BHED2

Naylor [Nay92] also uses a BSP tree to encode the image to perform occlusion-culling; nodes of the object-
space BSP tree projecting on a covered node of the image BSP are discarded in a manner similar to the hierar-
chical z-buffer which we will present in section 3 of the next chapter.

BSP trees are for example in the game Quake for the hidden-surface removal of the static part if the model
[Abr96] (moving objects are treated using a z-buffer).

1.5 Cylindrical decomposition

Mulmuley [Mul91] has devised an efficient preprocessing algorithm to perform object-precision view compu-
tations using a sweep of the view map as presented in section 8 of chapter 4. However this work is theoretical
and is unlikely to be implemented. He builds a cylindrical partition of 3D space which is similar to the BSPs
that Agarwall et al. [AGMV97, AEG98] have later described. Nonetheless, he does not use whole planes.
Each cell of his partition is bounded by parts of the input polygons and by vertical walls going through edges
or vertices of the scene. His paper also contains an interesting discussion of sweep algorithms.

2 Path planning using the visibility graph

2.1 Path planning

Nilsson [Nil69] developed the first path planning algorithms. Consider a 2D polygonal scene. The visibility
graph is defined as follows: The nodes are the vertices of the scene, and an arc joins two vertices A and B if
they are mutually visible, i.e. if the segment [AB] intersects no obstacle. As noted in the introduction, it is
possible to go in straight line from A to B only if B is visible from A. The start and goal points are added to the
set of initial vertices, and so are the corresponding arcs (see Fig. 5.3). Only arcs which are tangent to a pair of
polygons are necessary.

It can be easily shown that the shortest path between the start point and the goal goes through arcs of the
visibility graph. The rest of the method is thus a classical graph problem. See also [LPW79].

This method can be extended to non-polygonal scenes by considering bitangents and portions of curved
objects.

The method unfortunately does not generalize simply to 3D where the problem has been shown to be
NP-complete by Canny [Can88].
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Figure 5.3: Path planning using the visibility graph.

2.2 Visibility graph construction

The 2D visibility graph has size which is between linear and quadratic in the number of polygon edges. The
construction of visibility graphs is a rich subject of research in computational geometry. Optimal O(n 2) algo-
rithms have been proposed [EG86] as well as output-sensitive approaches (their running time depends on the
size of the output, i.e. the size of the visibility graph) [OW88, GM91].

The 2D visibility complex which we will review in section 1.2 of chapter 8 is also a powerful tool to build
visibility graphs.

In 3D, the term “visibility graph” often refers to the abstract graph where each object is a node, and where
arcs join mutually visible objects. This is however not the direct equivalent of the 2D visibility graph.

2.3 Extensions to non-holonomic visibility

In this section we present some motion planning works which are hard to classify since they deal with exten-
sions of visibility to curved lines of sight. They have been developed by Vendittelli et al. [VLN96] to plan
the motion of a car-like robot. Car trajectories have a minimum radius of curvature, which constraints their
motion. They are submitted to non-holonomic constraints: the tangent of the trajectory must be colinear to
the velocity. Dubins [Dub57] and Reeds and Shepp [RS90] have shown that minimal-length trajectories of
bounded curvature are composed of arcs of circles of minimum radius and line segments.

For example if a car lies at the origin of the plane and is oriented horizontally, the shortest path to the points
of the upper quadrant are represented in Fig. 5.4(a). The rightmost paths are composed of a small arc of circle
forward followed by a line segment. To go to the points on the left, a backward circle arc is first necessary, then
a forward arc, then a line segment.

Now consider an obstacle such as the line segment represented in Fig. 5.4(a). It forbids certain paths. The
points which cannot be reached are said to be in shadow, by analogy to the case where optimal paths are simple
line segments2.

The shape of such a shadow can be much more complex than in the line-visibility case, as illustrated in Fig.
5.4(b).

This analogy between visibility and reachability is further exploited in the paper by Nissoux et al. [NSL99]
where they plan the motion of robots with arbitrary numbers of degrees of freedom.

3 The Visual Hull

The reconstruction of objects from silhouettes (see section 2.2 of chapter 2) is very popular because it is robust
and simple. Remember that only exterior silhouettes are considered, folds caused by self occlusion of the object
are not considered because they are harder to extract from images. Not all objects can be reconstructed with

2What we describe here are in fact shadows in a Riemannian geometry. Our curved lines of sight are in fact geodesics, i.e.c the shortest
path from one point to another.
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(a) (b)

Figure 5.4: Shadow for non-holonomic path-planning (adapted from [VLN96]). (a) Simple (yet curved) shadow.
(b) Complex shadows. Some parts of the convex blocker do not lie on the shadow boundary. The small
disconnected shadow is caused by the impossibility to perform an initial backward circle arc.

this method; The cavity of a bowl can not be reconstructed because it is not present on an external silhouette.
The best reconstruction of a bowl one can expect is a “full” version of the initial object.

However the reconstructed object is not necessarily the convex hull of the object: the hole of a torus can be
reconstructed because it is present on the exterior silhouette of some images.

Laurentini [Lau94, Lau95, Lau97, Lau99] has introduced the visual hull concept to study this problem. A
point P of space is inside the visual hull of an object A, if from any viewpoint P projects inside the projection
of A. To give a line-space formulation, each line going through a point P of the visual hull intersects object A.
The visual hull is the smallest object which can be reconstructed from silhouettes. See Fig. 5.5 for an example.

E1

E2

(a) (b) (c)

E3

Figure 5.5: Visual hull (adapted from [Lau94]). (a) Initial object. A EEE event is shown. (b) Visual hull of the
object (the viewer is not allowed inside the convex hull of the object). It is delimited by polygons and a portion
of the ruled quadric of the E1E2E3 event. (c) A different object with the same visual hull. The two objects can
not be distinguished from their exterior silhouette and have the same occlusion properties.

The exact definition of the visual hull in fact depends on the viewing region authorized. The visual hull is
different if the viewer is allowed to go inside the convex hull of the object. (Half lines have to be considered
instead of lines in our line-space definition)

The visual hull is delimited by visual events. The visual hull of a polyhedron is thus not necessarily a
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polyhedron, as shown in Fig. 5.5 where a EEE event is involved.
Laurentini has proposed a construction algorithms in 2D [Lau94] and for objects of revolution in 3D

[Lau99]. Petitjean [Pet98] has developed an efficient construction algorithm for 2D visual hulls using the
visibility graph.

The visual hull also represents the maximal solid with the same occlusion properties as the initial object.
This concept thus completely applies to the simplification of occluders for occlusion culling. The simplified
occluder does not need to lie inside the initial occluder, but inside its visual hull. See the work by Law and Tan
[LT99] on occluder simplification.

4 Shadows volumes and beams

In this section we present the rich category of methods which perform visibility computation using pyramids
or cones. The apex can be defined by the viewpoint or by a point light source. It can be seen as the volume
occupied by the set of rays emanating from the apex and going through a particular object. The intersection of
such a volume with the scene accounts for the occlusion effects.

4.1 Shadow volumes

Shadow volumes have been developed by Crow [Cro77] to compute hard shadows. They are pyramids defined
by a point light source and a blocker polygon. They are then used in a scan-line renderer as illustrated in Fig.
5.6.

scan-line

point light source

shadow volume

A
P

blocker

Figure 5.6: Shadow volume. As object A is scan converted on the current scan-line, the shadowing of each
pixel is computed by counting the number of back-facing and front-facing shadow volume polygons on the line
joining it to the viewpoint. For point P, there is one front-facing intersection, it is thus in shadow.

The wedges delimiting shadow volumes are in fact visual events generated by the point light source and
the edges of the blockers. In the case of a polyhedron light source, only silhouette edges (with respect to the
source) need to be considered to build the shadow volume polygons.

Bergeron [Ber86] has proposed a more general version of Crow’s shadow volumes. His method has long
been very popular for production rendering.

Shadow volumes have also been used with ray-tracing [EK89]. Brotman and Badler [BB84] have presented
a z-buffer based use of shadow volumes. They first render the scene in a z-buffer, then they build the shadow
volumes and scan convert them. Instead of displaying them, for each pixel they keep the number of frontfacing
and backfacing shadow volume polygons. This method is hybrid object-space and image space, the advantage
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over the shadow map is that only one sampling is performed. They also sample an area light source with points
and add the contributions computed using their method to obtain soft shadow effects. An implementation
using current graphics hardware is described in [MBGN98] section 9.4.2. A hardware implementation has also
been developed on pixel-plane architecture [FGH+85], except that shadow volumes are simply described as
plane-intersections.

Shadow volumes can also be used inversely as light-volumes to simulate the scattering of light in dusty air
(e.g., [NMN87, Hai91]).

Albrecht Dürer [Dür38] describes similar constructions, as shown in Fig. 5.7

Figure 5.7: Construction of the shadow of a cube by Dürer.

4.2 Shadow volume BSP

Chin and Feiner [CF89] compute hard shadows using BSP trees. Their method can be compared to Atherton
et al.’s technique presented in section 2.1 of chapter 4 where the same algorithm is used to compute the view
and to compute the illuminated parts of the scene. Two BSP are however used: one for depth ordering, and one
called shadow BSP tree to classify the lit and unlit regions of space.

The polygons are traversed from front to back from the light source (using the first BSP) to build a shadow
BSP tree. The shadow BSP tree is split along the planes of the shadow volumes. As a polygon is considered, it
is first classified against the current shadow BSP tree (Fig. 5.8(a)). It is split into lit and unlit parts. Then the
edges of the lit part are used to generate new splitting planes for the shadow BSP tree (Fig. 5.8 (b)).

The scene augmented with shadowing information can then be rendered using the standard BSP.
Chrysanthou and Slater [CS95] propose a method which avoids the use of the scene BSP to build the shadow

BSP, resulting in fewer splits.
Campbell and Fussel [CF90] were the first to subdivide a radiosity mesh along shadow boundaries using

BSPs. A good discussion and some improvements can be found in Campbell’s thesis [Cam91].

4.3 Beam-tracing and bundles of rays

Heckbert and Hanrahan [HH84] developed beam tracing. It can be seen as a hybrid method between Weiler
and Atherton’s algorithm [WA77], Whitted’s ray-tracing [Whi80] and shadow volumes.

Beams are traced from the viewpoint into the scene. One initial beam is cast and clipped against the
scene polygons using Weiler and Atherton’s exact method, thus defining smaller beams intersecting only one
polygon (see Fig. 5.9(a)). If the a polygon is a mirror, a reflection beam is recursively generated. Its apex is the
symmetric to the viewpoint with respect to the light source (Fig. 5.9(b)). It is clipped against the scene, and the
computation proceeds.

Shadow beams are sent from the light source in a preprocess step similar to Atherton et al’s shadowing
[AWG78]. Refraction can be approximated by sending refraction beams. Unfortunately, since refraction is not
linear, this computation is not exact.

Dadoon et al. [DKW85] propose an efficient version optimized using BSP trees.
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Figure 5.8: 2D equivalent of shadow BSP. The splitting planes of the shadow BSP are represented with dashed
lines. (a) Polygon C is tested against the current shadow BSP. (b) It is split into a part in shadow C 1 and a lit
part C2. The boundary of the lit part generates a new splitting plane.
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Figure 5.9: Beam tracing. (a) A beam is traced from the eye to the scene polygons. It is clipped against the
other polygons. (b) Since polygon A is a mirror, a reflected beam is recursively traced and clipped.

Amanatides [Ama84] and Kirk [Kir87] use cones instead of beams. Cone-tracing allows antialiasing as well
as depth-of-field and soft shadow effects. The practical use of this method is however questionable because
secondary cones are hard to handle and because object-cone intersections are difficult to perform. Shinya et al.
[STN87] have formalized these concepts under the name of pencil tracing.

Beam tracing has been used for efficient specular sound propagation by Funkhouser and his co-author.
[FCE+98]. A bidirectional version has also been proposed where beams are propagated both from the sound
source and from the receiver [FMC99].They moreover amortize the cost of beam propagation as listeners and
sources move smoothly.

Speer [SDB85] has tried to take advantage of the coherence of bundles of rays by building cylinders in free-
space around a ray. If subsequent rays are within the cylinder, they will intersect the same object. Unfortunately
his method did not procure the expected speed-up because the construction of the cylinders was more costly
than a brute-force computation.

Beams defined by rectangular windows of the image can allow high-quality antialiasing with general scenes.
Ghazanfarpour and Hasenfratz [GH98, Has98] classify non-simple pixels in a manner similar to the A-buffer
or to the ZZ-buffer, but they take shadows, reflection and refraction into account.

Teller and Alex [TA98] propose the use of beam-casting (without reflection) in a real-time context. Beams
are adaptively subdivided according to a time budget, permitting a trade-off between time and image quality.
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Finally Watt [Wat90] traces beams from the light source to simulate caustic effects which can for example
be caused by the refraction of light in water.

4.4 Occlusion culling from a point

Sometimes, nearby large objects occlude most of the scene. This is the case in a city where nearby facades
hide most of the buildings. Coorg and Teller [CT96, CT97b] quickly reject the objects hidden by some con-
vex polygonal occluders. The scene is organised into an octree. A Shadow volume is generated for each
occluder, and the cells of the octree are recursively classified against it as occluded, visible or partially visible,
as illustrated in Fig. 5.10.

scene octree

big convex
occluder

Figure 5.10: Occlusion culling with large occluders. The cells of the scene octree are classified against the
shadow volumes. In dark grey we show the hidden cells, while those partially occluded are in light grey.

The occlusion by a conjunction of occluders in not taken into account, as opposed to the hierarchical z-
buffer method exposed in section 3 of chapter 6. However we will see in section 4.2 of chapter 7 that they treat
frame-to-frame coherence very efficiently.

Similar approaches have been developed by Hudson et al. [HMC +97]. Bittner et al. [BHS98] use shadow
volume BSP tree to take into account the occlusion caused by multiple occluders.

Woo and Amanatides [WA90] propose a similar scheme to speed-up hard shadow computation in ray-
tracing. They partition the scene in a regular grid and classify each voxel against shadow volumes as completely
lit, completely in umbra or complicated. Shadow rays are then sent only from complicated voxels.

Indoor architectural scenes present the dual characteristic feature to occlusion by large blockers: one can see
outside a room only through doors or windows. These opening are named portals. Luebke and George [LG95]
following ideas by Jones [Jon71] and Clark [Cla76] use the portals to reject invisible objects in adjacent rooms.
The geometry of the current room is completely rendered, then the geometry of adjacent rooms is tested against
the screen bounding box of the portals as shown in Fig. 5.11. They also apply their technique to the geometry
reflected by mirrors.

This technique was also used for a walk through a virtual colon for the inspection of acquired medical data
[HMK+97] and has been implemented in a 3D game engine [BEW +98].

4.5 Best-next-view

Best-next-view methods are used in model reconstruction to infer the position of the next view from the data
already acquired. The goal is to maximize the visibility of parts of the scene which were occluded in the
previous view. They are delimited by the volume of occlusion as represented in Fig. 5.12. These volumes are
in fact the shadow volumes where the camera is considered as a light source.

Reed and Allen [RA96] construct a BSP model of the object as well as the boundaries of the occlusion
volume. They then attempt to maximize the visibility of the latter. This usually results roughly in a 90 ◦ rotation
of the camera since the new viewpoint is likely to be perpendicular to the view volume.

Similar approaches have been developed by Maver and Bajcsy [MB93] and Banta et al. [BZW +95].
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Figure 5.11: Occlusion culling using image-space portals. The geometry of the adjacent rooms is tested against
the screen bounding boxes of the portals
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Figure 5.12: Acquisition of the model of a 3D object using a range image. The volume of occlusion is the
unknown part of space.

This problem is very similar to the problem of gaps in image-based view warping (see section 1.7 of chapter
2 and Fig. 2.7 page 12). When a view is reprojected, the regions of indeterminate visibility lie on the boundary
of the volumes of occlusion.

5 Area light sources

5.1 Limits of umbra and penumbra

Nishita and Nakamae [NN85, NON85, NN83] have computed the regions of umbra and penumbra caused by
convex blockers. They show that the umbra from a polygonal light source of a convex object is the intersection
of the umbra volumes from the vertices of the source (see Fig. 5.13). The penumbra is the convex hull of the
union of the umbra volumes. They use Crow’s shadow volumes to compute these regions.

The umbra is bounded by portions of EV events generated by one vertex of the source and one edge of the
blocker, while the penumbra is bounded EV events generated by edges and vertices of both the source and the
blocker.

Their method fails to compute the exact umbra caused by multiple blockers, since it is no longer the inter-
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Figure 5.13: Umbra (dark grey) and penumbra (light grey) of a convex blocker (adapted from [NN85]).

section of their umbras. The penumbra boundary is however valid, but some parts of the umbra are incorrectly
classified as penumbra. This is not a problem in their method because a shadow computation is performed in
the penumbra region (using an exact hidden line removal method). The umbra of a concave object is bounded
by EV visual events and also by EEE events (for example in Fig. 3.5 page 27 if polygon R is a source, the
EEE event exhibited is an umbra boundary). Penumbra regions are bounded only by EV events.

Drawings by da Vinci exhibit the first description of the limits of umbra and penumbra (Fig. 5.14).

5.2 BSP shadow volumes for area light sources

Chin and Feiner [CF92] have extended their BSP method to handle area light sources. They build two shadow
BSP, one for the umbra and one for the penumbra.

As in Nishita and Nakamae’s case, their algorithm does not compute the exact umbra volume due to the
occlusion by multiple blockers.

5.3 Discontinuity meshing

Heckbert [Hec92b, Hec92a] has introduced the notion of discontinuity meshing for radiosity computations.
At a visual event, a C2 discontinuity occurs in the illumination function (see [Arv94] for the computation of
illumination gradients). Heckbert uses EV discontinuity surfaces with one generator on the source.

Other authors [LTG93, LTG92, Stu94, Cam91, CF91a, GH94] have used similar techniques. See Fig. 5.15
for an example. Hardt and Teller [HT96] also consider discontinuities which are caused by indirect lighting.
Other discontinuity meshing techniques will be treated in section 2.3 of chapter 7 and 2.1 of chapter 8.

However, discontinuity meshing approaches have not yet been widely adopted because they are prone to
robustness problems and also because the irregular meshes induced are hard to handle.

5.4 Linear time construction of umbra volumes

Yoo et al. [YKSC98] perform the same umbra/penumbra classification as Nishita and Nakamae, but they avoid
the construction and intersection/union of all the shadow volumes from the vertices of the source.

They note that only EV events on separating and supporting planes have to be considered. Their algorithm
walks along the chain of edges and vertices simultaneously on the source and on the blocker as illustrated in
Fig. 5.16.
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Figure 5.14: Penumbra by Leonardo da Vinci (Manuscript). Light is coming from the lower window, and the
sphere causes soft shadows.

This can be interpreted in line space as a walk along the chain of 1 dimensional sets of lines defined by
visual events.

Related methods can be found in [Cam91, TTK96].

5.5 Viewpoint constraints

As we have seen, viewpoint optimisation is often performed for the monitoring of robotics tasks. In this
setting, the visibility of a particular feature of object has to be enforced. This is very similar to the computation
of shadows considering that the feature is an extended light source.

Cowan and Kovesi [CK88] use an approach similar to Nishita and Nakamae. They compute the penumbra
region caused by a convex blocker as the intersection of the half spaces defined by the separating planes of
the feature and blockers (i.e. planes tangent to both objects such that each object lies on a different side of the
plane). The union of the penumbra of all the blockers is taken and constraints related to the sensor are then
included: resolution of the image, focus, depth of field and view angle. The admissible region is the intersection
of these constraints.

Briggs and Donald [BD98] propose a 2D method which uses the intersection of half-planes defined by
bitangents. They also reject viewpoints from which the observation can be ambiguous because of similarities
in the workspace or in the object to be manipulated.

Tarabanis and Tsai [TTK96] compute occlusion free viewpoints for a general polyhedral scene and a general
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(a) (b)

Figure 5.15: Global illumination simulation. (a) Without discontinuity meshing. Note the jagged shadows. (b)
Using discontinuity meshing, shadows are finer (images courtesy of Dani Lischinski, Program of Computer
Graphics, Cornell University).

(a) (b)

(c) (d)

Figure 5.16: Linear time construction of a penumbra volume.

polygonal feature. They enumerate possible EV wedges and compute their intersection.

Kim et al. [KYCS98] also present an efficient algorithm which computes the complete visibility region of
a convex object.
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5.6 Light from shadows

Poulin et al. [PF92, PRJ97] have developed inverse techniques which allow a user to sketch the positions of
shadows. The position of the light source is then automatically deduced.

The principle of shadow volumes is reversed: A point P lies in shadow if the point light source is in a
shadow volume emanating from point P. The sketches of the user thus define constraints under the form of an
intersection of shadow volumes (see Fig. 5.17).

Figure 5.17: Sketching shadows. The user specifies the shadows of the ellipsoid on the floor with the thick
strokes. This generates constraint cones (dashed). The position of the light source is then deduced (adapted
from [PRJ97]).

Their method can also handle soft shadows, and additional constraints such as the position of highlights.

6 Shafts

Shaft method are based on the fact that occlusion between two objects can be caused only by objects inside
their convex hull. Shafts can be considered as finite beams for which the apex is not a point. They can also be
seen as the volume of space defined by the set of rays between two objects.

6.1 Shaft culling

Haines and Wallace [HW91] have developed shaft culling in a global illumination context to speed up form
factor computation using ray-casting. They define a shaft between two objects (or patches of the scene) as the
convex hull of their bounding box (see Fig. 5.18).

A

B

C

Figure 5.18: Shaft culling. The shaft between A and B is defined as the convex hull of the union of their
bounding boxes. Object C intersects the shaft, it may thus cause occlusion between A and B.
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They have developed an efficient construction of approximate shafts which takes advantage of the axis
aligned bounding boxes. The test of an object against a shaft is also optimized for bounding boxes.

Similar methods have been independently devised by Zhang [Zha91] and Campbell [Cam91].
Marks et al [MWCF90], Campbell [Cam91] and Drettakis and Sillion [DS97] have derived hierarchical

versions of shaft culling. The hierarchy of shafts is implicitly defined by a hierarchy on the objects. This
hierarchy of shaft can also be seen as a hierarchy in line-space [DS97]. Brière and Poulin [BP96] also use a
hierarchy of shafts or tubes to accelerate incremental updates in ray tracing.

6.2 Use of a dual space

Zao and Dobkin [ZD93] use shaft culling between pairs of triangles. They speed up the computation by the
use of a multidimensional dual space. They decompose the shaft between a pair of triangles into tetrahedra
and derive the conditions for another triangle to intersect a tetrahedron. These conditions are linear inequalities
depending on the coordinates of the triangle.

They use multidimensional spaces depending on the coordinates of the triangles to speed up these tests.
The queries in these spaces are optimized using binary trees (kd-trees in practice).

6.3 Occlusion culling from a volume

Cohen-Or and his co-authors [COFHZ98, COZ98] compute potentially visible sets from viewing cells. That
is, the part of the scene where the viewer is allowed (the viewing space in short) is subdivided into cells from
which the set of objects which may be visible is computed. This method can thus be seen as a viewpoint space
method, but the core of the computation is based on the shaft philosophy.

Their method detects if a convex occluder occludes an object from a given cell. If convex polygonal objects
are considered, it is sufficient to test if all rays between pairs of vertices are blocked by the occluder. The test
is early terminated as soon as a non-blocked ray is found. It is in fact sufficient to test only silhouette rays (a
ray between two point is a silhouette ray if each point is on the silhouette as seen from the other).

The drawback of this method is that it can not treat the occlusion caused by many blockers. The amount
of storage required by the potentially visible set information is also a critical issue, as well as the cost of
ray-casting.

7 Visibility propagation through portals

As already introduced, architectural scenes are organized into rooms, and inter-room visibility occurs only
along openings named portals. This makes them particularly suitable for visibility preprocessing. Airey [Air90]
and Teller [Tel92b, TS91] decompose a building into cells (roughly representing rooms) and precompute Po-
tentially Visible Sets for each set. These are superset of objects visible from the cell which will then typically
be sent to a z-buffer in a walkthrough application (see below).

7.1 Visibility computation

We describe here the methods proposed by Teller [Tel92b]. An adjacency graph is built connecting cells
sharing a portal. Visibility is then propagated from a cell to neighbouring cells through portal sequences in a
depth-first manner. Consider the situation illustrated in Fig. 5.19(a). Cell B is visible from cell A through the
sequence of portals p1 p2. Cell C is neighbour of B in the adjacency graph, its visibility from A is thus tested.
A sightline stabbing the portals p1, p2 and p3 is searched (see Fig. 5.19(b)). A stab-tree is built which encodes
the sequences of portals.

If the scene is projected on a floorplan, this stabbing problem reduces to find a stabber for a set of segments
and can be solved using linear programming (see [Tel92b, TS91]).

If rectangular axis-aligned portals are considered in 3D, Teller [Tel92b] shows that the problem can be
solved by projecting it in 2D along the three axis directions.

If arbitrary oriented portals are computed, he proposes to compute a conservative approximation to the
visible region [Tel92b, TH93]. As each portal is added to the sequence, the EV events bounding the visibility
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Figure 5.19: Visibility computations in architectural environments. (a) In grey: part of the scene visible from
the black cell. (b) A stabbing line (or sightline) through a sequence of portals.

region are updated. These EV events correspond to separating planes between the portals. For each edge of
the sequence of portals, only the extremal event is considered. The process is illustrated Fig. 5.20. It is a
conservative approximation because EEE boundaries are not considered.

p1

p2
p3e

v2 v3

p1

p2
p3 p4

v4

e

(a) (b)

Figure 5.20: Conservative visibility propagation through arbitrary portals. (a) The separating plane considered
for e is generated by v3 because it lies below the one generated by v2. (b) As a new portal is added to the
sequence, the separating plane is updated with the same criterion.

If the visibility region is found to be empty, the new cell is not visible from the current cell. Otherwise,
objects inside the cell are tested for visibility against the boundary of the visibility region as in a shaft method.

Airey [Air90] also proposes an approximate scheme where visibility between portals is approximated by
casting a certain number of rays (see section 4 of chapter 8 for the approaches involving sampling with rays).
See also the work by Yagel and Ray [YR96] who describe similar ideas in 2D.

The portal sequence can be seen as a sort of infinite shaft. We will also study it as the set of lines going
through the portals in section 3.3 of chapter 8.

7.2 Applications

The primary focus of these potentially visible sets methods was the use in walkthrough systems. Examples
can be found in both Airey [ARB90] and Teller’s thesis [TS91, Tel92b]. Teller also uses an online visibility
computation which restricts the visible region to the current viewpoint. The stab-tree is used to speed up a
beam-like computation.

Funkhouser et al. [FS93] have extended Teller’s system to use other rendering acceleration techniques such
as mesh simplification in a real time context to obtain a constant framerate. He and his co-authors [FST92,
Fun96c] have also used the information provided by the potentially visible sets to efficiently load from the disk
or from the network only the parts of the geometry which may become visible in the subsequent frames. It can
also be used in a distributed virtual environment context to limit the network bandwidth to messages between
clients who can see each other [Fun95].

These computations have also been applied to speed-up radiosity computations by limiting the calculation
of light interactions between mutually visible objects [TH93, ARB90]. It also permits lighting simulations for
scenes which cannot fit into memory [TFFH94, Fun96b].
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CHAPTER 6

Image-Space

L’art de peindre n’est que l’art d’exprimer l’invisible
par le visible

Eugène FROMENTIN

OST OF the image-space methods we present are based on a discretisation of an image.
They often take advantage of the specialised hardware present in most of today’s comput-
ers, which makes them simple to implement and very robust. Sampling rate and aliasing
are however often the critical issues. We first present some methods which detect oc-
clusions using projections on a sphere or on planes. Section 1 deals with the use of the

z-buffer hardware to speed-up visibility computation. We then survey extensions of the z-buffer to perform
occlusion-culling. Section 4 presents the use of a z-buffer orthogonal to the view for occlusion-culling for
terrain-like scenes. Section 5 presents epipolar geometry and its use to perform view-warping without depth
comparison. Section 6 discusses the computation of soft shadow using convolution, while section 7 deals with
shadow-coherence in image-space.

1 Projection methods

1.1 Shadow projection on a sphere

Bouknight and Kelly [BK70] propose an optimization to compute shadows during a scan-line process as pre-
sented in section 6 of chapter 4. Their method avoids the need to intersect the wedge defined by the current
span and the light source with all polygons of the scene.

As a preprocess, the polygons of the scene are projected onto a sphere centered at the point light source. A
polygon can cast shadows on another polygon only if their projections overlap. They use bounding-box tests
to speed-up the process.

Slater [Sla92] proposes a similar scheme to optimize the classification of polygons in shadow volume BSPs.
He uses a discretized version of a cube centered on the source. Each tile (pixel) of the cube stores the polygon
which project on it. This speeds up the determination of overlapping polygons on the cube. This shadow tiling
is very similar to the light-buffer and to the hemicube which we will present in section 2.

57
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1.2 Area light sources

Chrysanthou and Slater [CS97] have extended this technique to handle area light sources. In the methods
presented above, the size of the sphere or cube does not matter. This is not the case of the extended method: a
cube is taken which encloses the scene.

For each polygon, the projection used for point light sources becomes the intersection of its penumbra
volume with the cube. The polygons with which it interacts are those which project on the same tiles.

1.3 Extended projections

The extended projection method proposed in chapter 5 of [Dur99] can be seen as an extension of the latter
technique to perform offline occlusion culling from a volumetric cell (it can also be seen as an extension
of Greene’s hierarchical z-buffer surveyed in section 3). The occluders and occludees are projected onto a
projection plane using extended projection operators. The extended projection of an occluder is the intersection
of its views from all the viewpoints inside the cell. The extended projection of an occludee is the union of its
views (similar to the penumbra used by Chrysanthou et al.).

If the extended projection of an occludee is in the cumulative extended projection of some occluders (and
if it lies behind them), then it is ensured that it is hidden from any point inside the cell. This method handles
occluder fusion.

2 Advanced z-buffer techniques

The versatility and robustness of the z-buffer together with efficient hardware implementations have inspired
many visibility computation and acceleration schemes1. The use of the frame-buffer as a computational model
has been formalized by Fournier and Fussel [FF88].

2.1 Shadow maps

As evoked in section 1.2 of chapter 2, hard shadow computation can be seen as the computation of the points
which are visible from a point-light source. It is no surprise then that the z-buffer was used in this context.

Figure 6.1: Shadow map principle. A shadow map is computed from the point of view of the light source
(z-values are represented as grey levels). Then each point in the final image is tested for shadow occlusion by
projecting it back in the shadow map (gallion model courtesy of Viewpoint Datalab).

A two pass method is used. An image is first computed from the source using a z-buffer. The z values of
the closest points are stored in a depth map called shadow map. Then, as the final image is rendered, deciding

1Unexpected applications of the z-buffer have also been proposed such as 3D motion planning [LRDG90], Voronoi diagram computa-
tion [Hae90, ICK+99] or collision detection [MOK95].
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if a point is in shadow or not consists in projecting it back to the shadow map and comparing its distance to
the stored z value (similarly to shadow rays, using the depth map as a query data-structure). The shadow map
process is illustrated in Fig 6.1. Shadow maps were developed by Williams [Wil78] and have the advantage
of being able to treat any geometry which can be handled by a z-buffer. Discussions of improvements can be
found in [Gra92, Woo92].

The main drawback of shadow masks is aliasing. Standard filtering can not be applied, because averaging
depth values makes no sense in this context. This problem was addressed by Reeves et al. [RSC87]. Averaging
the depth values of the neighbouring pixels in the shadow map before performing the depth comparison would
make no sense. They thus first compare the depth value with that of the neighbouring pixels, then they compute
the average of the binary results. Had-oc soft shadows are obtained with this filtering, but the size of the
penumbra is arbitrary and constant. See also section 6 for soft computation using an image-space shadow-map.

Soft shadow effects can be also achieved by sampling an extended light source with point light sources and
averaging the contributions [HA90, HH97, Kel97]. See also [Zat93] for a use of shadow maps for high quality
shadows in radiosity lighting simulation.

Shadow maps now seem to predominate in production. Ray tracing and shadow rays are used only when the
artifacts caused by shadow maps are too noticeable. A hardware implementation of shadow maps is now avail-
able on some machines which allow the comparison of a texture value with a texture coordinate [SKvW +92]2.

Zhang [Zha98a] has proposed an inverse scheme in which the pixels of the shadow map are projected in
the image. His approach consists in warping the view from the light source into the final view using the view
warping technique presented in section 1.7 of chapter 2. This is similar in spirit to Atherton and Weiler’s
method presented in section 2.1 of chapter 4: the view from the source is added to the scene database.

2.2 Ray-tracing optimization using item buffers

A z-buffer can be used to speed up ray-tracing computations. Weghorst et al. [WHG84] use a z-buffer from
the viewpoint to speed up the computation of primary rays. An identifier of the objects is stored for each pixel
(for example each object is assigned a unique color) in a so called item buffer. Then for each pixel, the primary
ray is intersected only with the corresponding object. See also [Sun92].

Haines and Greenberg [HG86] propose a similar scheme for shadow rays. They place a light buffer centered
on each point light source. It consists of 6 item buffers forming a cube (Fig. 6.2(a)). The objects of the scene
are projected onto this buffer, but no depth test is performed, all objects projecting on a pixel are stored. Object
lists are sorted according to their distance to the point light source. Shadow rays are then intersected only with
the corresponding objects, starting with the closest to the source.

Poulin and Amanatides [PA91] have extended the light-buffer to linear light sources. This latter method
is a first step towards line-space acceleration techniques that we present in section 1.4 of chapter 8, since it
precomputes all objects intersected by the rays emanating from the light source.

Salesin and Stolfi [SS89, SS90] have extended the item buffer concept for ray-tracing acceleration. Their
ZZ-buffer performs anti-aliasing through the use of an A-buffer like scheme. They detect completely covered
pixels, avoiding the need for a subsampling of that pixel. They also sort the objects projecting on a non -
simple pixel by their depth intervals. The ray-object intersection can thus be terminated earlier as soon as an
intersection is found.

ZZ buffers can be used for primary rays and shadow rays. Depth of field and penumbra effects can also be
obtained with a slightly modified ZZ-buffer.

In a commercial products such as Maya from Alias Wavefront [May99], an A-buffer and a ray-tracer are
combined. The A-buffer is used to determine the visible objects, and ray-tracing is used only for pixels where
high quality refraction or reflection is required, or if the shadow maps cause too many artifacts.

2A shadow map is computed from the point light source and copied into texture memory. The texture coordinate matrix is set to the
perspective matrix from the light source. The initial u,v,w texture coordinate of a vertex are set to its 3D coordinates. After transformation,
w represents the distance to the light source. It is compared against the texture value at u,v, which encodes the depth of the closest object.
The key feature is the possibility to draw a pixel only if the value of w is smaller than the texture value at u,v.See [MBGN98] section 9.4.3.
for implementation details.
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A

B

C

(a) (b)

Figure 6.2: (a) Light buffer. (b) Form factor computation using the hemicube. Five z-buffers are placed around
the center of patch A. All form factors between A and the other patches are evaluated simultaneously, and
occlusion of C by B is taken into account.

2.3 The hemicube

Recall that form factors are used in radiosity lighting simulations to model the proportion of light leaving a
patch which arrives at another. The first method developed to estimate visibility for form factor computations
was the hemicube which uses five item-buffer images from the center of a patch as shown in Fig. 6.2(b). The
form factor between one patch and all the others is evaluated simultaneously by counting the number of pixels
covered by each patch.

The hemicube was introduced by Cohen et al. [CG85] and has long been the standard method for radiosity
computations. However, as for all item buffer methods, sampling and aliasing problems are its main drawbacks.
In section 2.2 of chapter 4 and section 4 of chapter 8 we present some solutions to these problems.

Sillion and Puech [SP89] have proposed an alternative to the hemicube which uses only one plane parallel
the patch (the plane is however not uniformly sampled: A Warnock subdivision scheme is used.

Pietrek [Pie93] describe an anti-aliased version of the hemicube using a heuristic based on the variation
between a pixel and its neighbours. See also [Mey90, BRW89]. Alonso and Holzschuch [AH97] present
similar ideas as well as a deep discussion of the efficient access to the graphics hardware resources.

2.4 Sound occlusion and non-binary visibility

The wavelengths involved in sound propagation make it unrealistic to neglect diffraction phenomena. Simple
binary visibility computed using ray-object intersection is far from accurate.

Tsingos and Gascuel [TG97a] use Fresnel ellipsoids and the graphics hardware to compute semi-quantitative
visibility values between a sound source and a microphone. Sound does not propagate through lines; Fresnel
ellipsoids describe the region of space in which most of the sound propagation occurs. Their size depends on
the sound frequency considered. Sound attenuation can be modeled as the amount of occluders present in the
Fresnel ellipsoid. They use the graphics hardware to compute a view from the microphone in the direction of
the source, and count the number of occluded pixels.

They also use such a view to compute diffraction patterns on an extended receiver such as a plane [TG97b].
One view is computed from the source, and then for each point on the receiver, and integral is computed using
the z values of the view. The contribution of each pixel to diffraction is then evaluated (see Fig. 6.3 for an
example).
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Figure 6.3: Non binary visibility for sound propagation. The diffraction by the spheres of the sound emitted by
the source causes the diffraction pattern on the plane. (a) Geometry of the scene. (b) z-buffer from the source.
(c) Close up of the diffraction pattern of the plane. (Courtesy of Nicolas Tsingos, iMAGIS-GRAVIR).

3 Hierarchical z-buffer

The z-buffer is simple and robust, however it has linear cost in the number of objects. With the ever increasing
size of scenes to display, occlusion culling techniques have been developed to avoid the cost incurred by objects
which are not visible.

Greene et al. [GKM93, Gre96] propose a hierarchical version of the z-buffer to quickly reject parts of the
scene which are hidden. The scene is partitioned to an octree, and cells of the octree are rendered from front to
back (the reverse of the original painter algorithm, see e.g. [FvDFH90, Rog97] or section 4 of chapter 4) to be
able to detect the occlusion of back objects by frontmost ones. Before it is rendered, each cell of the octree is
tested for occlusion against the current z values. If the cell is occluded, it is rejected, otherwise its children are
treated recursively.

The z-buffer is organised in a pyramid to avoid to test all the pixels of the cell projection. Fig. 6.4 shows
the principle of the hierarchical z-buffer.

scene octreehierarchical z-buffer

Figure 6.4: Hierarchical z-buffer.

The hierarchical z-buffer however requires many z-value queries to test the projection of cells and the
maintenance of the z-pyramid; this can not be performed efficiently on today’s graphics hardware. Zhang et
al. [ZMHH97, Zha98b] have presented a two pass version of the hierarchical z-buffer which they have suc-
cessfully implemented using available graphics hardware. They first render a subset of close and big objects
called occluders, then read the frame buffer and build a so-called hierarchical occlusion map against which they
test the bounding boxes of the objects of the scene. This method has been integrated in a massive model ren-
dering system system [ACW+99] in combination with geometric simplification and image-based acceleration
techniques.

The strength of these methods is that they consider general occluders and handle occluder fusion, i.e. the
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occlusion by a combination of different objects.
The library Open GL Optimizer from Silicon Graphics proposes a form of screen space occlusion culling

which seems similar to that described by Zhang et al. Some authors [BMT98] also propose a modification to
the current graphics hardware to have access to z-test information for efficient occlusion culling.

4 Occluder shadow footprints

Many 3D scenes have in fact only two and a half dimensions. Such a scene is called a terrain, i.e., a function
z = f (x,y). Wonka and Schmalstieg [WS99] exploit this characteristic to compute occlusions with respect to a
point using a z-buffer with a top view of a scene.

occluder shadow
footprint

occluder

occluder
shadow
wedge

occludee

viewpoint

side view top view

occluder shadow
footprint

occludee

occluder

Figure 6.5: Occluder shadow footprints. A projection from above is used to detect occlusion. Objects are hidden
if they are below the occluder shadows. The footprints (with height) of the occluded regions are rasterized using
a z-buffer. Depth is represented as grey levels. Note the gradient in the footprint due to the slope of the wedge.

Consider the situation depicted in Fig. 6.5 (side view). They call the part of the scene hidden by the
occluder from the viewpoint the occluder shadow (as if the viewpoint were a light source). This occluder
shadow is delimited by wedges. The projection of such a wedge on the floor is called the footprint, and an
occludee is hidden by the occluder if it lies on the shadow footprint and if it is below the edge.

The z-buffer is used to scan-convert and store the height of the shadow footprints, using an orthographic
top view (see Fig. 6.5). An object is hidden if its projection from above is on a shadow footprint and if it is
below the shadow wedges i.e, if it is occluded by the footprints in the top view.

5 Epipolar rendering

Epipolar geometry has been developed in computer vision for stereo matching (see e.g. [Fau93]). Assume that
the geometry of two cameras is known. Consider a point A in the first image (see Fig. 6.6). The possible point
of the 3D scene must lie on the line LA going through A and viewpoint 1. The projection of the corresponding
point of the scene on the second image is constrained by the epipolar geometry: it must be on line L ′

A which is
the projection of LA on image 2. The search for a correspondence can thus be restricted from a 2D search over
the entire image to a 1D search on the epipolar line.

Mc Millan and Bishop [MB95] have taken advantage of the epipolar geometry for view warping. Consider
the warping from image 2 to image 1 (image 2 is the initial image, and we want to obtain image 1 by reprojecting
the points of image 2). We want to decide which point(s) is reprojected on A. These are necessarily points on
the epipolar line L′

A. However, many points may project on A; only the closest has to be displayed. This can be
achieved without actual depth comparison, by warping the points of the epipolar line L ′

A in the order shown by
the thick arrow, that is, from the farthest to the closest. If more than one point projects on A, the closest will
overwrite the others. See also section 1.5 of chapter 8 for a line-space use of epipolar geometry.
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1 2

A L'A

image 1 image 2

LA

Figure 6.6: Epipolar geometry. LA is the set of all points of the scene possibly projecting on A. L ′
A is the

projection on image 2. For a warping from image 2 to image 1, points of image 2 have to be reprojected to
image 1 in the order depicted by the arrows for correct occlusion.

6 Soft shadows using convolution

Soler and Sillion [SS98a, Sol98] have developed efficient soft shadow computations based on the use of con-
volutions. Some of the ideas are also present in a paper by Max [Max91]. A simplification could be to see their
method as a “wise” blurring of shadow maps depending on the shape of the light source.

source

blocker

convolution
kernel

(a) (b) (c)

Figure 6.7: Soft shadows computation using convolution. (a) Geometry of the scene. (b) Projection on a
parallel approximate geometry. (c) The shadow is the convolution of the projection of the blockers with the
inverse image of the source.

Consider an extended light source, a receiver and some blockers as shown in Fig. 6.7(a). This geometry is
first projected onto three parallel planes (Fig. 6.7(b)). The shadow computation for this approximate geometry
is equivalent to a convolution: the projection of the blocker(s) is convolved with the inverse projection of the
light source (see Fig. 6.7(c)). The shadow map obtained is then projected onto the receiver (this is not necessary
in our figures since the receiver is parallel to the approximate geometry).

In the general case, the shadows obtained are not exact: the relative sizes of umbra and penumbra are not
correct. They are however not constant if the receiver is not parallel to the approximate geometry. The results
are very convincing (see Fig. 6.8).

For higher quality, the blockers can be grouped according to their distance to the source. A convolution
is performed for each group of blockers. The results then have to be combined; Unfortunately the correlation
between the occlusions of blockers belonging to different groups is lost (see also [Gra92] for a discussion of
correlation problems for visibility and antialiasing).

This method has also been used in a global simulation system based on radiosity [SS98b].

7 Shadow coherence in image-space

Haines and Greenberg [HG86] propose a simple scheme to accelerate shadow computation in ray-tracing. Their
shadow cache simply stores a pointer to the object which caused a shadow on the previous pixel. Because of
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Figure 6.8: Soft shadows computed using convolutions (image courtesy of Cyril Soler, iMAGIS-GRAVIR)

coherence, it is very likely that this object will continue to cast a shadow on the following pixels.
Pearce and Jevans [PJ91] extend this idea to secondary shadow rays. Because of reflection and refrac-

tion, many shadow rays can be cast for each pixel. They thus store a tree of pointers to shadowing objects
corresponding to the secondary ray-tree.

Worley [Wor97] pushes the idea a bit further for efficient soft shadow computation. He first computes
simple hard shadows using one shadow-ray per pixel. He notes that pixels where shadow status changes are
certainly in penumbra, and so are their neighbours. He thus “spreads” soft shadows, using more shadow rays
for these pixels. The spreading operation stops when pixels in umbra or completely lit are encountered.

Hart et al [HDG99] perform a similar image-space floodfill to compute a blocker map: for each pixel,
the objects casting shadows on the visible point are stored. They are determined using a low number of rays
per pixel, but due to the image-space flood-fill the probability to miss blockers is very low. They then use an
analytic clipping of the source by the blockers to compute the illumination of each pixel.



CHAPTER 7

Viewpoint-Space

On ne voit bien qu’avec le cœur. L’essentiel est invisible
pour les yeux.

Antoine de Saint-EXUPERY, Le Petit Prince

IEWPOINT-SPACE methods characterize viewpoints with respect to some visibility property.
We first present the aspect graph which partitions viewpoint space according to the qualitative
aspect of views. It is a fundamental visibility data-structure since it encodes all possible views
of a scene. Section 2 presents some methods which are very similar to the aspect graph.
Section 3 deals with the optimization of a viewpoint or set of viewpoints to satisfy some

visibility criterion. Finally section 4 presents two methods which use visual events to determine the viewpoints
at which visibility changes occur.

1 Aspect graph

As we have seen in section 2 of chapter 2 and Fig. 2.8 page 14, model-based object recognition requires a
viewer-centered representation which encodes all the possible views of an object. This has led Koenderink
and Van Doorn [Kv76, Kv79] to develop the visual potential of an object which is now more widely known
as the aspect graph (other terminology are also used in the literature such as view graph, characteristic views,
principal views, viewing data, view classes or stable views).

Aspect graph approaches consist in partitioning viewpoint space into cells where the view of an object are
qualitatively invariant. The aspect graph is defined as follows:

• Each node represents a general view or aspect as seen form a connected cell of viewpoint space.

• Each arc represents a visual event, that is, a transition between two neighbouring general views.

The aspect graph is the dual graph of the partition of viewpoint space into cells of constant aspect. This
partition is often named viewing data or viewpoint space partition. The terminology aspect graph and viewpoint
space partition are often used interchangeably although they refer to dual concepts.

65
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Even though all authors agree on the general definition, the actual meaning of general view and visual event
varies. First approximate approaches have considered the set of visible features as defining a view. However for
exact approaches the image structure graph has rapidly imposed itself. It is the graph formed by the occluding
contour or visible edges of the object. This graph may be labeled with the features of the object.

It is important to understand that the definition of the aspect graph is very general and that any definition of
the viewing space and aspect can be exchanged. This makes the aspect graph concept a very versatile tool as
we will see in section 2.

Aspect graphs have inspired a vast amount of work and it is beyond the scope of this survey to review all
the literature in this field. We refer the reader to the survey by Eggert et al. [EBD92] or to the articles we
cite and the references therein. Approaches have usually been classified according to the viewpoint space used
(perspective or orthographic) and by the class of objects considered. We will follow the latter, reviewing the
methods devoted to polyhedra before those related to smooth objects. But first of all, we survey the approximate
method which use a discretization of viewpoint space.

1.1 Approximate aspect graph

Early aspect graph approaches have used a quasi uniform tessellation of the viewing sphere for orthographic
projection. It can be obtained through the subdivision of an initial icosahedron as shown by Fig. 7.1. Sample
views are computed from the vertices of this tessellation (the typical number of sample views is 2000). They
are then compared, and similar views are merged. Very often, the definition of the aspect is the set of visible
features (face, edge, vertex) and not their adjacencies as it is usually the case for exact aspect graphs This
approach is very popular because of its simplicity and robustness, which explains that it has been followed by
many researchers e.g. [Goa83, FD84, HK85]. We will see that most of the recognition systems using aspect
graphs which have been implemented use approximate aspect graphs.

Figure 7.1: Quasi uniform subdivision of the viewing sphere starting with an icosahedron.

We will see in section 3.2 that this quasi uniform sampling scheme has also been applied for viewpoint
optimization problems.

A similar approach has been developed for perspective viewpoint space using voxels [WF90].
The drawback of approximate approaches is that the sampling density is hard to set, and approximate

approach may miss some important views, which has led some researchers to develop exact methods.

1.2 Convex polyhedra

In the case of convex polyhedra, the only visual events are caused by viewpoints tangent to faces. See Fig.
7.2 where the viewpoint partition and aspect graph of a cube are represented. For orthographic projection, the
directions of faces generate 8 regions on the viewing sphere, while for perspective viewpoint space, the 6 faces
of the cube induce 26 regions.

The computation of the visual events only is not sufficient. Their arrangement must be computed, that is,
the decomposition of viewpoint space into cells, which implies the computation of the intersections between
the events to obtain the segments of events which form the boundaries of the cells. Recall that the arrangement
of n lines (or well-behaved curves) in 2D has O(n2) cells. In 3D the arrangement of n planes has complexity
O(n3) in size [dBvKOS97, O’R94, Ede87, BY98].

The first algorithms to build the aspect graph of 3D objects have dealt with convex polyhedra under ortho-
graphic [PD86] and perspective [SB90, Wat88] projection.
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Figure 7.2: Aspect graph of a convex cube. (a) Initial cube with numbered faces. (b) and (c) Partition of
the viewpoint space for perspective and orthographic projection with some representative aspects. (d) and
(e) Corresponding aspect graphs. Some aspects are present in perspective projection but not in orthographic
projection, for example when only two faces are visible. Note also that the cells of the perspective viewpoint
space partition have infinite extent.

1.3 General polyhedra

General polyhedra are more involved because they generate edge-vertex and triple-edge events that we have
presented in chapter 3. Since the number of triple-edge events can be as high as O(n 3), the size of the aspect
graph of a general polygon is O(n6) for orthographic projection (since the viewing sphere is two dimensional),
and O(n9) for perspective projection for which viewpoint space is three-dimensional. However these bounds
may be very pessimistic. Unfortunately the lack of available data impede a realistic analysis of the actual
complexity. Note also that we do not count here the size of the representative views of aspects, which can be
O(n2) each, inducing a size O(n8) for the orthographic case and O(n11) for the perspective case.

The cells of the aspect graph of a general polyhedron are not necessary convex. Partly because of the EEE
events, but also because of the EV events. This is different from the 2D case where all cells are convex because
in 2D visual events are line segments.

We detail here the algorithms proposed by Gigus and his co-authors [GM90, GCS91] to build the aspect
graph of general polyhedra under orthographic projection.

In the first method [GM90], potential visual events are considered for each face, edge-vertex pair and triple
of edges. At this step, occlusion is not taken into account: objects lying between the generators of the events
are considered transparent. These potential events are projected on the viewing sphere, and the arrangement is
built using a plane sweep.

However, some boundaries of the resulting partition may correspond to false visual event because of occlu-
sion. For example, an object may lie between the edge and vertex of an EV event as shown in Fig. 7.3. Each
segment of cell boundary (that is, each portion of visual event) has to be tested for occlusion. False segment
are discarded, and the cells are merged.

Gigus Canny and Seidel [GCS91] propose to cope with the problem of false events before the arrangement
is constructed. They compute the intersection of all the event with the object in object space as shown in Fig.



68 CHAPTER 7. VIEWPOINT-SPACE

V

E

P

Q

(a) (b)

R

actual event

Figure 7.3: False event (“transparent” event). Object R occludes vertex V from edge E, thus only a portion
of the potential visual event corresponds to an actual visual event. (a) In object space. (b) In orthographic
viewpoint space.

7.3(a), and only the unoccluded portion is used for the construction of the arrangement.

They also propose to store and compute the representative view efficiently. They store only one aspect for
an arbitrary seed cell. Then all other views can be retrieved by walking along the aspect graph and updating
this initial view at each visual event.

(a) (b)

Figure 7.4: Aspect graph of a L-shaped polyhedron under orthographic projection (adapted from [GM90]). (a)
Partition of the viewing sphere and representative views. (b) Aspect graph.

These algorithms have however not been implemented to our knowledge. Fig. 7.4 shows the partition of
the viewing sphere and the aspect graph of a L-shaped polyhedron under orthographic transform.

Similar construction algorithms have been proposed by Stewman and Bowyer [SB88] and Stewman [Ste91]
who also deals with perspective projection.

We will see in section 1.1 of chapter 8 that Plantinga and Dyer [PD90] have proposed a method to build the
aspect graph of general polyhedra which uses an intermediate line space data-structure to compute the visual
events.
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1.4 Curved objects

Methods to deal with curved objects were not developed till later. Seales and Dyer [SD92] have proposed the
use of a polygonal approximation of curved objects with polyhedra, and have restricted the visual events to
those involving the silhouette edges. For example, an edge-vertex event EV will be considered only if E is a
silhouette edge from V (as this is the case in Fig. 3.3 page 26). This is one example of the versatility of the
aspect graph definition: here the definition of the aspect depends only on the silhouette.

Kriegman and Ponce [KP90] and Eggert and Bowyer [EB90] have developed methods to compute aspect
graphs of solids of revolution under orthographic projection, while Eggert [Egg91] also deals with perspective
viewpoint space. Objects of revolution are easier to handle because of their rotational symmetry. The problem
reduces to a great circle on the viewing sphere or to one plane going through the axis of rotation in perspective
viewpoint space. The rest of the viewing data can then be deduced by rotational symmetry. Eggert et al.
[EB90, Egg91] report an implementation of their method.

The case of general curved object requires the use of the catalogue of singularities as proposed by Callahan
and Weiss [CW85]; they however developed no algorithm.

Petitjean and his co-authors [PPK92, Pet92] have presented an algorithm to compute the aspect graph of
smooth objects bounded by arbitrary smooth algebraic surface under orthographic projection. They use the
catalogue of singularities of Kergosien [Ker81]. There approach is similar to that of Gigus and Malik [GM90].
They first trace the visual events of the “transparent” object (occlusion is not taken into account) to build a
partition of the viewing sphere. They then have to discard the false (also called occluded) events and merge
the corresponding cells. Occlusion is tested using ray-casting at the center of the boundary. To trace the visual
event, they derive their equation using a computer algebra system and powerful numerical techniques. The
degree of the involved algebraic systems is very large, reaching millions for an object described by an equation
of degree 10. This algorithm has nevertheless been implemented and an example of result is shown in Fig. 7.5.

Figure 7.5: Partition of orthographic viewpoint space for a dimple object with representative aspects. (adapted
from [PPK92]).

Similar methods have been developed by Sripradisvarakul and Jain [SJ89], Ponce and Kriegman [PK90]
while Rieger [Rie92, Rie93] proposes the use of symbolic computation and cylindrical algebraic decomposition
[Col75] (for a good introduction to algebraic decomposition see the book by Latombe [Lat91] p. 226).

Chen and Freeman [CF91b] have proposed a method to handle quadric surfaces under perspective projec-
tion. They use a sequence of growing concentric spheres centered on the object. They trace the visual events
on each sphere and compute for which radius the aspects change.

Finally PetitJean has studied the enumerative properties of aspect graphs of smooth and piecewise smooth
objects [Pet95, Pet96]. In particular, he gives bounds on the number of topologically distinct views of an object
using involved mathematical tools.
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1.5 Use of the aspect graph

The motivation of aspect graph research was model-based object recognition. The aspect graph provides infor-
mations on all the possible views of an object. The use of this information to recognise an object and its pose
are however far from straightforward, one reason being the huge number of views. Once the view of an object
has been acquired from a camera and its features extracted, those features can not be compared to all possible
views of all objects in a database: indexing schemes are required. A popular criterion is the number of visible
features (face, edge, vertex) [ESB95].

The aspect graph is then often used to build offline a strategy tree [HH89]or an interpretation tree [Mun95].
At each node of an interpretation tree corresponds a choice of correspondence, which then recursively leads to
a restricted set of possible interpretation. For example if at a node of the tree we suppose that a feature of the
image corresponds to a given feature A of a model, this may exclude the possibility of another feature B to be
present because feature A and B are never visible together.

The information of the viewing space partition can then be used during pose estimation to restrict the
possible set of viewpoint [Ike87, ESB95]. If the observation is ambiguous, Hutchinson and Kak [HK89] and
Gremban and Ikeuchi [GI87] also use the information encoded in the aspect graph to derive a new relevant
viewpoint from which the object and pose can be discriminated.

Dickinson et al. [DPR92] have used the aspect for object composed of elementary objects which they call
geons. They use an aspect graph for each geon and then use structural information on the assembly of geons to
recognise the object.

However the aspect graph has not yet really imposed itself for object recognition. The reasons seem to
be the difficulty of robust implementation of exact methods, huge size of the data-structure and the lack of
obvious and efficient indexing scheme. One major drawback of the exact aspect graphs is that they capture all
the possible views, whatever their likelihood or significance. The need of a notion “importance” or scale of the
features is critical, which we will discuss in section 1 of chapter 9.

For a good discussion of the pros and cons of the aspect graph, see the report by Faugeras et al. [FMA +92].
Applications of the aspect graph for rapid view computation have also been proposed since all possible

views have been precomputed [PDS90, Pla93]. However, the only implementation reported restricted the
viewpoint movement to a rotation around one axis.

More recently Gu and his coauthors [GGH+99] have developed a data-structure which they call a silhouette
tree which is in fact an aspect graph for which the aspect is defined only by the exterior silhouette. It is built
using a sampling and merging approach on the viewing sphere. It is used to obtain images with a very fine
silhouette even if a very simplified version of the object is rendered.

Pellegrini [Pel99] has also used a decomposition of the space of direction similar to the aspect graph to
compute the form factor between two unoccluded triangles. The sphere S 2 is decomposed into regions where
the projection of the two triangles has the same topology. This allows an efficient integration because no
discontinuity of the integration kernel occur in these regions.

A somehow related issue is the choice of a good viewpoint for the view of a 3D graph. Visual intersections
should be avoided. These in fact correspond to EV or EEE events. Some authors [BGRT95, HW98, EHW97]
thus propose some methods which avoid points of the viewing sphere where such events project.

2 Other viewpoint-space partitioning methods

The following methods exhibit a typical aspect graph philosophy even though they use a different terminology.
They subdivide the space of viewpoints into cells where a view is qualitatively invariant.

2.1 Robot Localisation

Deducing the position of a mobile robot from a view is exactly the same problem as determining the pose of an
object. The differences being that a range sensor is usually used and that the problem is mostly two dimensional
since mobile robots are usually naturally constrained on a plane.

Methods have thus been proposed which subdivide the plane into cells where the set of visible walls is
constant [GMR95, SON96, TA96]. See Fig. 7.6. Visual events occur when the viewpoint is aligned with a
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wall segments or along a line going through two vertices. Indexing is usually done using the number of visible
walls.

Figure 7.6: Robot self-localization. Partition of a scene into cells of structurally invariant views by visual events
(dashed).

Guibas and his co-authors [GMR95] also propose to index the aspects in a multidimensional space. To
summarize, they associate to a view with m visible vertices a vector of 2m dimensions depending on the
coordinates of the vertices. They then use standard multidimensional search methods [dBvKOS97].

2.2 Visibility based pursuit-evasion

The problem of pursuit-evasion presented in section 3 and Fig. 2.14 page 18 can also be solved using an
aspect-graph-like structure. Remember that the robot has to “clean” a scene by checking if an intruder is
present. “Contaminated” regions are those where the intruder can hide. We present here the solution developed
by LaValle et al. [LLG+97, GLL+97, GLLL98].

gap edges

contaminated
region0

visual
event

cleaned
region

11

0

(a) (b)

visible
region

gap edge

cleaned
region

11

(0)

(0,0) (0,1) (1,0) (1,1)

(1)

(c)

Figure 7.7: Pursuit-Evasion strategy. (a) The contaminated region can be cleaned only if the visual event is
crossed. The status of the neighbouring regions is coded on the gap edges. (b) The robot has moved to a second
cell, cleaning a region. (c) Part of the graph of possible states (upper node correspond to cell in (a) while lower
nodes correspond to the cell in (b)). In thick we represent the goal states and the move from (a) to (b).

Consider the situation in Fig. 7.7(a). The view from the robot is in dark grey. The contaminated region can
be cleaned only when the indicated visual event is crossed as in Fig. 7.7(b).

The scene is partitioned by the visibility event with the same partition as for robot localization (see Fig.
7.6). For each cell of the partition, the structure of the view polygon is invariant, and in particular the gap edges
(edges of the view which are not on the boundary of the scene). The status of the neighbouring regions is coded
on these gap edges: 0 indicates a contaminated region while 1 indicates a cleaned one.

The state of the robot is thus coded by its current cell and the status of the corresponding gap edges. In
Fig 7.7(a) the robot status is (1,0), while in (b) it is (1). Solving the pursuit problem consists in finding the
succession of states of the robot which end at a state where all gap edges are at 1. A graph is created with one
node for each state (that means 2m states for a cell with m edges). Edges of the graph correspond to possible
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transition. A transition is possible only to neighbouring cells, but not to all corresponding states. Fig. 7.7
represents a portion of this graph.

The solution is then computed using a standard Dijkstra search. See Fig. 2.14 page 18 for an example.
Similar methods have also been proposed for curved environments [LH99].

2.3 Discontinuity meshing with backprojections

We now turn to the problem of soft shadow computation in polygonal environments. Recall that the penumbra
region corresponds to zones where only a part of an extended light source is visible. Complete discontinuity
meshing subdivides the scene polygons into regions where the topology of the visible part of the source is
constant. In this regions the illumination varies smoothly, and at the region boundary there is a C 2 discontinuity.

Moreover a data-structure called backprojection encodes the topology of the visible part of the source as
represented in Fig. 7.8(b) and 7.9(b). Discontinuity meshing is an aspect graph method where the aspect is
defined by the visible part of the source, and where viewpoint space is the polygons of the scene.

V

E

(a)

V

source

(b)

discontinuity
surface

E

source

Figure 7.8: Complete discontinuity meshing with backprojections. (a) Example of an EV event intersecting the
source. (b) In thick backprojection from V (structure of the visible part of the source)
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Figure 7.9: Discontinuity meshing. (a) Example of an EEE event intersecting the source. (b) In thick backpro-
jection from a point on EP (structure of the visible part of the source)

Indeed the method developed and implemented by Drettakis and Fiume [DF94] is the equivalent of Gigus
Canny and Seidel’s algorithm [GCS91] presented in the previous section. Visual events are the EV and EEE
event with one generator on the source or which intersect the source (Fig. 7.8(a) and 7.9(a)). An efficient
space subdivision acceleration is used to speed up the enumeration of potential visual events. For each vertex
generator V an extended pyramid is build with the light source, and only the generators lying inside this volume
are considered. Space subdivision is used to accelerate this test. A similar scheme is used for edges. Space
subdivision is also used to speed-up the discontinuity surface-object intersections. See Fig. 7.10 for an example
of shadows and discontinuity mesh.
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Figure 7.10: Complete discontinuity mesh of a 1000 polygons scene computed with Drettakis and Fiume’s
algorithm [DF94].

This method has been used for global illumination simulation using radiosity [DS96]. Both the mesh and
form-factor problem are alleviated by this approach, since the backprojection allows for efficient point-to-area
form factor computation (portion of the light leaving the light source arriving at a point). The experiments

exhibited show that both the quality of the induced mesh and the precision of the form-factor computation are
crucial for high quality shadow rendering.

2.4 Output-sensitive discontinuity meshing

Stewart and Ghali [SG94] have proposed an output-sensitive method to build a complete discontinuity mesh.
They use a similar discontinuity surface-object intersection, but their enumeration of the discontinuity surfaces
is different.

It is based on the fact that a vertex V can generate a visual event with an edge E only if E lies on the
boundary of the visible part of the source as seen from V (see Fig. 7.8). A similar condition arises for EEE
events: the two edges closest to the source must belong to the backprojection of some part of the third edge,
and must be adjacent in this backprojection as shown in Fig. 7.9.

They use an update of the backprojections at visual events. They note that a visual event has effect only
on the parts of scene which are farther from the source than its generators. They thus use a sweep with planes
parallel to the source. Backprojections are propagated along the edges and vertices of the scene, with an update
at each edge-visual event intersection.

Backprojection have however to be computed for scratch at each peak vertex, that is, for each polyhedron,
the vertex which is closest to the source. Standard hidden surface removal is used.

The algorithm can be summarized as follows:

• Sort the vertices of the scene according to the distance to the source.

• At peak vertices compute a backprojection and propagate it to the beginning of the edges below.

• At each edge-visual event intersection update the backprojection.

• For each new backprojection cast (intersect) the generated visual event through the scene.

This algorithm has been implemented [SG94] and extended to handle degenerate configuration [GS96]
which cause some C1 discontinuities in the illumination function.
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3 Viewpoint optimization

In this section we present methods which attempt to chose a viewpoint or a set of viewpoints to optimize the
visibility of all or some of the features of a scene. The search is here exhaustive, all viewpoints (or a sampling)
are tested. The following section will present some methods which alleviate the need to search the whole space
of viewpoints. Some related results have already been presented in section 4.5 and 5.5 of chapter 5.

3.1 Art galleries

We present the most classical results on art gallery problems. The classic art gallery theorem is due to Chvátal
[Chv75] but he exhibited a complex proof. We here present the proof by Fisk [Fis78] which is much simpler.
We are given an art-gallery modeled by a simple (with no holes) 2D polygons.

Theorem: � n
3� stationary guards are always sufficient and occasionally necessary to guard a polygonal

art gallery with n vertices.
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Figure 7.11: Art gallery. (a) The triangulation of a simple polygon is 3-colored with colors 1, 2 and 3. Color 3 is
the less frequent color. Placing a guard at each vertex with color 3 permits to guard the polygon with less than
� n

3� guards. (b) Worst-case scene. To guard the second spike, a camera is needed in the grey region. Similar
constraints for all the spikes thus impose the need of at least � n

3� guards

The proof relies on the triangulation of the polygon with diagonals (see Fig. 7.11(a)). The vertices of such
a triangulation can always be colored with 3 colors such that no two adjacent vertices share the same color
(Fig. 7.11(a)). This implies that any triangle has one vertex of each color. Moreover, each vertex can guard its
adjacent triangles.

Consider the color which colors the minimum number of vertices. The number of corresponding vertices is
lower than � n

3�, and each triangle has such a vertex. Thus all triangles are guarded by this set of vertices. The
lower bound can be shown with a scene like the one presented in Fig. 7.11(b).

Such a set of guards can be found in O(n) time using a linear time triangulation algorithm by Chazelle
[dBvKOS97]. The problem of finding the minimum number of guards has however been shown NP-hard by
Aggarwal [Aga84] and Lee and Lin [LL86].

For other results see the surveys on the domain [O’R87, She92, Urr98].

3.2 Viewpoint optimization

The methods which have been developed to optimize the placement of sensors or lights are all based on a
sampling approach similar to the approximate aspect graph.

We present here the methods developed by Tarbox and Gottschlich [TG95]. Their aim is to optimize the
placement of a laser and a camera (as presented in Fig. 2.12 page 16) to be able to inspect an object whose
pose and geometry are known. The distance of the camera and laser to the object is fixed, viewpoint space is
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thus a viewing sphere even if perspective projection is used. The viewing sphere is tessellated starting with an
icosahedron (Fig. 7.1 page 66). Sample points are distributed over the object. For each viewpoint, the visibility
of each sample point is tested using ray-casting. It is recorded in a two dimensional array called the viewability
matrix indexed by the viewpoint and sample point. (In fact two matrices are used since the visibility constraints
are not the same for the camera and for the laser.)

The viewability matrix can be seen as a structure in segment space: each entry encodes if the segment
joining a given viewpoint and a given sample point intersects the object.

The set of viewpoints which can see a given feature is called the viewpoint set. For more robustness,
especially in case of uncertainties in the pose of the object, the viewpoints of the boundary of a viewpoint set
are discarded, that is, the corresponding entry in the viewability matrix is set to 0. For each sample point, a
difficulty-to-view is computed which depends on the number of viewpoints from which it is visible.

A set of pairs of positions for the laser and the camera are then searched which resumes to a set-cover
problem. The first strategy they propose is greedy. The objective to maximize is the number of visible sample
points weighted by their difficulty-to-view. Then each new viewpoint tries to optimize the same function
without considering the already seen points until all points are visible from at least one viewpoint.

The second method uses simulated annealing (which is similar to a gradient descend which can “jump”
over local minima). An arbitrary number of viewpoints are randomly placed on the viewing sphere, and their
positions are then perturbated to maximize the number of visible sample points. If no solution is found for n, a
new viewpoint is added and the optimization proceeds. This method provides results with fewer viewpoints.

Similar methods have been proposed for sensor placement [MG95, TUWR97], data acquisition for mobile
robot on a 2D floorplan [GL99] and image-based representation [HLW96]. See Fig. 7.12 for an example of
sensor planning.

Figure 7.12: Planning of a stereo-sensor to inspect an object (adapted from [TUWR97])

Stuerzlinger [Stu99] also proposes a similar method for the image-based representation of scenes. His view-
point space is a horizontal plane at human height. Both objects and viewpoint space are adaptively subdivided
for more efficient results. He then uses simulated annealing to optimize the set of viewpoints.

3.3 Local optimization and target tracking

Yi, Haralick and Shapiro [YHS95] optimize the position of both a camera and a light source. The position of
the light should be such that features have maximal contrast in the image observed by the camera. Occlusion
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is not really handled in their approach since they performed their experiments only on a convex box. However
their problem is in spirit very similar to that of viewpoint optimization for visibility constraints, so we include
it in this survey because occlusion could be very easily included in their optimization metric.

They use no initial global computation such as the viewability matrix studied in the previous paragraph, but
instead perform a local search. They perform a gradient descent successively on the light and camera positions.
This method does not necessarily converge to a global maximum for both positions, but they claim that in their
experiments the function to optimize is well behaved and convex and that satisfactory results are obtained.

Local optimization has also been proposed [LGBL97, FL98] for the computation of the motion of a mobile
robot which has to keep a moving target in view. Assume the motion of the target is only partially predictable
(by bound on the velocity for example). A local optimization is performed in the neighbourhood of the pursuer
position in a game theoretic fashion: the pursuer has to take into account all the possible movements of the
target to decide its position at the next timestep. For a possible pursuer position in free space, all the possible
movements of the target are enumerated and the probability of its being visible is computed. The pursuer
position with the maximum probability of future visibility is chosen. See Fig. 7.13 for an example of pursuit.
The range of the sensor is taken into account.

Figure 7.13: Tracking of a mobile target by an observer. The region in which the target is visible is in light grey
(adapted from [LGBL97]).

They also propose another strategy for a better prediction [LGBL97]. The aim is here to maximize the
escape time of the target. For each possible position of the pursuer, its visibility region is computed (the inverse
of a shadow volume). The distance of the target to the boundary of this visibility region defines the minimum
distance it has to cover to escape the pursuer (see Fig. 7.14).

The extension of these methods to the prediction of many timesteps is unfortunately exponential.

4 Frame-to-frame coherence

In section 1.5 we have presented applications of the aspect graph to updating a view as the observer continu-
ously moves. The cost induced by the aspect graph has prevented the use of these methods. We now present
methods which use the information encoded by visual events to update views, but which consider only a subset
of them.

4.1 Coherence constraints

Hubschman and Zucker [HZ81, HZ82] have studied the so-called frame-to-frame coherence for static scenes.
This approach is based on the fact that if the viewpoint moves continuously, two successive images are usually
very similar. They study the occlusions between pairs of convex polyhedra.
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Figure 7.14: Tracking of a mobile target by an observer. The region in light grey is the region in which the
target is visible from the observer. The thick arrow is the shortest path for the target to escape.

They note that a polyhedron will start (or stop) occluding another one only if the viewpoint crosses one of
their separating planes. This corresponds to EV visual events. Moreover this can happen only for silhouette
edges.

Each edge stores all the separating planes with all other polyhedra. These planes become active only when
the edge is on the silhouette in the current view. As the viewpoint crosses one of the active planes, the occlusion
between the two corresponding polyhedra is updated.

This approach however fails to detect occlusions caused by multiple polyhedra (EEE events are not consid-
ered). Furthermore, a plane is active even if both polyhedra are hidden by a closer one, in which case the new
occlusion has no actual effect on the visibility of the scene; Transparent as well as opaque events are consid-
ered. These limitations however simplify the approach and make it tractable. Unfortunately, no implementation
is reported.

4.2 Occlusion culling with visual events

Coorg and Teller [CT96] have extended their shadow-volume based occlusion culling presented in section 4.4
of chapter 5 to take advantage of frame-to-frame coherence.

The visibility of a cell of the scene subdivision can change only when a visual event is crossed. For each
large occluder visibility changes can occur only for the neighbourhood of partially visible parts of the scene
(see Fig. 7.15). They thus dynamically maintain the visual events of each occluders and test the viewpoint
against them.

visibility event

Figure 7.15: Occlusion culling and visual events

They explain that this can be seen as a local linearized version of the aspect graph. Indeed they maintain a
superset of the EV boundaries of the current cell of the perspective aspect graph of the scene.
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CHAPTER 8

Line-Space

Car il ne sera fait que de pure lumière
Puisée au foyer saint des rayons primitifs

Charles BAUDELAIRE, Les Fleurs du Mal

INE-SPACE methods characterize visibility with respect to line-object intersections. The
methods we present in section 1 partition lines according to the objects they intersect. Section
2 introduces graphs in line-space, while section 3 discusses Plücker coordinates, a powerful
parameterization which allows the characterization of visibility using hyperplanes in 5D. Fi-
nally section 4 presents stochastic and probabilistic approaches in line-space.

1 Line-space partition

1.1 The Asp

Plantinga and Dyer [PD87, PD90, Pla88] devised the asp as an auxiliary data-structure to compute the aspect
graph of polygonal objects. The definition of the asp depends on the viewing space considered. We present the
asp for orthographic projection.

A duality is used which maps oriented lines into a 4 dimensional space. Lines are parameterized as pre-
sented in section 1.4 of chapter 3 and Fig. 3.2(a) (page 25) by their direction, denoted by two angles (θ,ϕ) and
the coordinates (u,v) on an orthogonal plane. The asp for θ and ϕ constant is thus an orthographic view of the
scene from direction (θ,ϕ). The asp of an object corresponds to the set of lines intersecting this object. See
Fig. 8.1(a) and (b).

Occlusion in a view corresponds to subtraction in the asp: if object A is occluded by object B, then the asp
of B has to be subtracted from the asp of A as shown in Fig. 8.1(c). In fact the intersection of the asp of two
objects is the set of lines going through them. Thus if object B is in front of object A, and these lines no longer
“see” A, they have to be removed from the asp of A.

The 1 dimensional boundaries of the asp correspond to the visual events necessary to build the aspect graph.
See Fig. 8.1(c) where an EV event is represented. Since it is only a slice of the asp, only one line of the event

79
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Figure 8.1: Slice of the asp for ϕ = 0 (adapted from [PD90]). (a) and (b) Asp for one triangle. The θ slices in
white correspond to orthographic views of the triangle. When θ = 90 ◦ the view of the triangle is a segment.
(c) Occlusion corresponds to subtraction in asp space. We show the asp of triangle A which is occluded by B.
Note the occlusion in the θ slices in white. We also show the outline of the asp of B. The visual event EV is a
point in asp asp space.

is present under the form of a point. Since occlusion has been taken into account with subtraction, the asp
contains only the opaque events, transparent events do not have to be detected and discarded as in Gigus and
Malik’s method [GM90] presented in section 1.3. Unfortunately no full implementation is reported. The size
of the asp can be as high as O(n4), but as already noted, this does not give useful information about its practical
behaviour with standard scenes.

In the case of perspective projection, the asp is defined in the 5 dimensional space of rays. Occlusion is
also handled with subtractions. Visual events are thus the 2 dimensional boundaries of the asp.

1.2 The 2D Visibility Complex

Pocchiola and Vegter [PV96b, PV96a] have developed the 2D visibility complex which is a topological structure
encoding the visibility of a 2D scene. The idea is in a way similar to the asp to group rays which “see” the
same objects. See [DP95] for a simple video presentation.

The central concept is that of maximal free segments. These are segments of maximal length that do not
intersect the interior of the objects of the scene. More intuitively, a maximal free segment has its extremities
on the boundary of objects, it may be tangent to objects but does not cross them. A line is divided in many
maximal free segment by the objects it intersects. A maximal free segment represents a group of colinear rays
which see the same objects. The manifold of 2D maximal free segments is two-dimensional nearly everywhere,
except at certain branchings corresponding to tangents of the scene. A tangent segment has neighbours on both
sides of the object and below the object (see Fig. 8.2).

The visibility complex is the partition of maximal free segments according to the objects at their extremities.
A face of the visibility complex is bounded by chains of segments tangent to one object (see Fig. 8.3).

Pocchiola and Vegter [PV96b, PV96a] propose optimal output sensitive construction algorithms for the
visibility complex of scenes of smooth objects. Rivière [Riv95, Riv97] has developed an optimal construction
algorithm for polygonal scenes.

The visibility complex implicitly encodes the visibility graph (see section 2 of chapter 5) of the scene: its
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Figure 8.2: Topology of maximal free segments. (a) In the scene. (b) In a dual space where lines are mapped
into points (the polar parameterization of line is used).
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Figure 8.3: A face of the visibility complex. (a) In the scene. (b) In a dual space.

vertices are the bitangents forming the visibility graph.
The 2D visibility complex has been applied to the 2D equivalent of lighting simulation by Orti et al.

[ORDP96, DORP96]. The form factor between two objects corresponds to the face of the complex grouping
the segments between these two objects. The limits of umbra and penumbra are the vertices (bitangents) of the
visibility complex.

1.3 The 3D Visibility Complex

Durand et al. [DDP96, DDP97b] have proposed a generalization of the visibility complex for 3D scenes of
smooth objects and polygons. The space of maximal free segments is then a 4D manifold embedded in 5D
because of the branchings. Faces of the complex are bounded by tangent segments (which have 3 dimensions),
bitangent segments (2 dimension), tritangent segments (1D) and finally vertices are segments tangent to four
objects. If polygons are considered, the 1-faces are the EV and EEE critical lines.

The visibility complex is similar to the asp, but the same structure encodes the information for both per-
spective and orthographic projection. It moreover provides adjacencies between sets of segments.

Langer and Zucker [LZ97] have developed similar topological concepts (particularly the branchings) to
describe the manifold of rays of a 3D scene in a shape-from-shading context.

See also section 4 where the difference between lines and maximal free segments is exploited.

1.4 Ray-classification

Ray classification is due to Arvo and Kirk [AK87]. The 5 dimensional space of rays is subdivided to accelerate
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ray-tracing computation. A ray is parameterized by its 3D origin and its direction which is encoded on a cube
for simpler calculations. Beams in ray-space are defined by an XYZ interval (an axis aligned box) and an
interval on the cube of directions (see Fig. 8.4).

(b)

(a)

(c)

Figure 8.4: Ray classification. (a) interval in origin space. (b) interval in direction space. (c) Corresponding beam of rays.

The objects lying in the beam are computed using a cone approximation of the beam. They are also sorted
by depth to the origin box. Each ray belonging to the beam then needs only be intersected with the objects
inside the beam. The ray-intervals are lazily and recursively constructed. See Fig. 8.5 for an example of result.

Figure 8.5: Image computed using ray classification (courtesy of Jim Arvo and David Kirk, Apollo Computer Inc.)

Speer [Spe92b] describes similar ideas and Kwon et al [KKCS98] improve the memory requirements of
ray-classification, basically by using 4D line space instead of 5D ray-space. This method is however still
memory intensive, and it is not clear that it is much more efficient that 3D regular grids.

The concept of the light buffer presented in section 2.2 of chapter 6 has been adapted for linear and area
light source by Poulin and Amanatides [PA91] and by Tanaka and Takahashi [TT95, TT97]. The rays going
through the source are also classified into beams. The latter paper uses an analytical computation of the visible
part of the light source using the cross-scanline method reviewed in section 6 of chapter 4.

Lamparter et al. [LMW90] discretize the space of rays (using adaptive quadtrees) and rasterize the objects
of the scene using a z-buffer like method. Hinkenjann and Müller [HM96] propose a similar scheme to classify
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segments using a 6 dimensional space (3 for each extremity of a segment).

1.5 Multidimensional image-based approaches

Recently there has been great interest in both computer vision and computer graphics for the study of the de-
scription of a scene through the use of a multidimensional function in ray-space. A 3D scene can be completely
described by the light traveling through each point of 3D space in each direction. This defines a 5D function
named the plenoptic function by Adelson and Bergen [AB91].

The plenoptic function describes light transport in a scene, similar data-structures have thus been applied
for global illumination simulation [LF96, LW95, GSHG98].

Gortler et al. [GGSC96] and Levoy and Hanrahan [LH96] have simplified the plenoptic function by as-
suming that the viewer is outside the convex hull of the scene and that light is not modified while traveling in
free-space. This defines a function in the 4 dimensional space of lines called lumigraph or light-field. This
space is discretized, and a color is kept for each ray. A view can then be extracted very efficiently from any
viewpoint by querying rays in the data structure. This data structure is more compact than the storage of one
view for each 3D point (which defines a 5D function) for the same reason exposed before: a ray is relevant for
all the viewpoints lying on it. There is thus redundancy if light does not vary in free-space.

A two plane parameterization is used both in the light-field [LH96] and lumigraph [GGSC96] approaches
(see Fig 3.2(b) page 25). Xu et al. [GGC97] have studied the form of some image features in this dual
space, obtaining results similar to those obtained in the aspect graph literature [PD90, GCS91]. Camahort et
al. [CLF98] have studied the (non) uniformity of this parameterization and proposed alternatives based on
tessellations of the direction sphere. Their first parameterization is similar to the one depicted in Fig. 3.2(a)
using a direction and an orthogonal plane, while the second uses parameterization line using two points on
a sphere bounding the scene. See section 4 and the book by Santalo [San76] for the problems of measure
and probability on sets of lines. See also the paper by Halle [Hal98] where images from multiple viewpoints
(organised on a grid) are rendered simultaneously using epipolar geometry.

Chrysanthou et al. [CCOL98] have adapted the lumigraph methods to handle ray occlusion query. They
re-introduce a fifth dimension to handle colinear rays, and their scheme can be seen as a discretization of the
3D visibility complex.

Wang et al. [WBP98] perform an occlusion culling preprocessing which uses concepts from shaft culling,
ray classification and lumigraph. Using a two-plane parameterization of rays leaving a given cell of space, they
recursively subdivide the set of rays until each beam can be classified as blocked by a single object or too small
to be subdivided.

2 Graphs in line-space

In this section we present some methods which build a graph in line space which encodes the visual events of
a scene. As opposed to the previous section, only one and zero dimensional sets of lines are considered.

2.1 The Visibility Skeleton

Durand et al [DDP97c, DDP97a] have defined the visibility skeleton which can be seen either as a simplification
of the 3D visibility complex or as a graph in line space defined by the visual events.

Consider the situation represented in Fig. 8.6(a). A visual event V1V2 and the corresponding critical line set
are represented. Recall that it is a one dimensional set of lines. It is bounded by two extremal stabbing lines
V1V2 and V1V3. Fig. 8.6(b) shows another visual event V2E2 which is adjacent to the same extremal stabbing
line. This defines a graph structure in line space represented in Fig. 8.6(c). The arcs are the 1D critical line sets
and the nodes are the extremal stabbing lines. Other extremal stabbing lines include lines going through one
vertex and two edges and lines going through four edges (see Fig. 8.7).

Efficient access to the arcs of this graph is achieved through a two dimensional array indexed by the poly-
gons at the extremity of each visual event. The visibility skeleton is built by detecting the extremal stabbing
lines. The adjacent arcs are topologically deduced thanks to a catalogue of adjacencies. This avoids explicit
geometric calculations on the visual events.
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Figure 8.6: (a) An EV critical line set. It is bounded by two extremal stabbing lines V1V2 and V1V3. (b) Other
EV critical line sets are adjacent to V1V2. (c) Corresponding graph structure in line space.

Figure 8.7: Four lines in general position are stabbed by two lines (adapted from [Tel92b])

The visibility skeleton has been implemented and used to perform global illumination simulation [DDP99].
Point-to-area form factors can be evaluated analytically, and the limits of umbra and penumbra can be quickly
computed considering any polygon as a light source (as opposed to standard discontinuity meshing where only
a small number of primary light sources are considered).

2.2 Skewed projection

McKenna et O’Rourke [MO88] consider a scene which is composed of lines in 3D space. Their aim is to
study the class of another line in a sense similar to the previous section if the original lines are the edges of
polyhedron, or to compute the mutually visible faces of polyhedra.

They use a skewed projection to reduce the problem to 2D computations. Consider a pair of lines L 1 and
L2 as depicted in Fig. 8.8. Consider the segment joining the two closest points of the lines (shown dashed) and
the plane P orthogonal to this segment and going through its mid-point. Each point on P defines a unique line
going through L1 and L2. Consider a third line L3. It generates EEE critical lines. The intersections of these
critical lines with plane P lie on an hyperbola H.

The intersections of the hyperbolae defined by all other lines of the scene allow the computation of the
extremal stabbing lines stabbing L1 and L2. The computation of course has to be performed in the O(n 2) planes
defined by all pairs of lines. A graph similar to the visibility skeleton is proposed (but for sets of lines). No
implementation is reported.

The skewed projection duality has also been used by Jaromczyk and Kowaluk [JK88] in a stabbing context
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Figure 8.8: Skewed projection.

and by Bern et al. [BDEG90] to update a view along a linear path (the projection is used to compute the visual
events at which the view has to be updated).

3 Plücker coordinates

3.1 Introduction to Plücker coordinates

Lines in 3D space can not be parameterized continuously. The parameterizations which we have introduced
in section 1.4 of chapter 3 both have singularities. In fact there cannot be a smooth parameterization of lines
in 4D without singularity. One intuitive way to see this is to note that it is not possible to parameterize the S 2

sphere of directions with two parameters without a singularity. Nevertheless, if S 2 is embedded in 3D, there is
a trivial parameterization, i.e. x,y,z. However not all triples of coordinates correspond to a point on S 2.

Similarly, oriented lines in space can be parameterized in a 5D space with the so-called Pl ücker coordinates
[Plü65]. The equations are given in appendix 11, here we just outline the principles. One nice property of
Plücker coordinates is that the set of lines which intersect a given line a is a hyperplane in Plücker space (its
dual Πa; The same notation is usually used for the dual of a line and the corresponding hyperplane). It separates
Plücker space into oriented lines which turn around � clockwise or counterclockwise (see Fig. 8.9).

a
b

(a)

a
b

(a)

a
b

(c)

∏b

∏a ∏a ∏a

∏b

∏b

Plücker space

3D space

Figure 8.9: In Plücker space the hyperplane corresponding to a line a separates lines which turn clockwise and
counterclockwise around a. (The hyperplane is represented as a plane because a five-dimensional space is hard
to illustrate, but note that the hyperplane is actually 4D).

As for the embedding of S 2 which we have presented, not all 5-uples of coordinates in Plücker space cor-
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respond to a real line. The set of lines in this parameterization lie on a quadric called the Pl ücker hypersurface
or Grassman manifold or Klein quadric.

Now consider a triangle in 3D space. All the lines intersecting it have the same orientation with respect
to the three lines going through its edges (see Fig. 8.10). This makes stabbing computations very elegant
in Plücker space. Linear calculations are performed using the hyperplanes corresponding to the edges of the
scene, and the intersection of the result with the Plücker hypersurface is then computed to obtain real lines.

a

b

c

3D space Plücker space

Plücker
hypersurface

(4D)

∏c

∏b
∏a

stabbers

Figure 8.10: Lines stabbing a triangle. In 3D space, if the edges are well oriented, all stabbers rotate around
the edges counterclockwise. In Plücker space this corresponds to the intersection of half spaces. To obtain real
lines, the intersection with the Plücker hypersurface must be considered. (In fact the hyperplanes are tangent
to the Plücker hypersurface)

Let us give a last example of the power of Plücker duality. Consider three lines in 3D space. The lines
stabbing each line lie on its (4D) hyperplanes in Plücker space. The intersection of the three hyperplane is a
2D plane in Plücker space which can be computed easily. Once intersected with the Plücker hypersurface, we
obtain the EEE critical line set as illustrated Fig. 8.11.

a ∏a

b

c
∏b

EEE (1D)

3D space Plücker space

Plücker
hypersurface

(4D)

∏c

hyperplanes (4D)

2D planeEEE

Figure 8.11: Three lines define a EEE critical line set in 3D space. This corresponds to the intersection of
hyperplanes (not halfspaces) in Plücker space. Note that hyperplanes are 4D while their intersection is 2D.
Unfortunately they are represented similarly because of the lack of dimensions of this sheet of paper.(adapted
from [Tel92b]).

More detailed introductions to Plücker coordinates can be found in the books by Sommerville [Som51] or
Stolfi [Sto91] and in the thesis by Teller [Tel92b] 1. See also Appendix 11.

1Plücker coordinates can also be extended to use the 6 coordinates to describe forces and motion. See e.g. [MS85, PPR99]
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3.2 Use in computational geometry

Plücker coordinates have been used in computational geometry mainly to find stabbers of sets of polygons, for
ray-shooting and to classify lines with respect to sets of lines (given a set of lines composing the scene and two
query lines, can we continuously move the first to the second without intersecting the lines of the scene).

We give an overview of a paper by Pellegrini [Pel93] which deals with ray-shooting in a scene composed
of triangles. He builds the arrangement of hyperplanes in Plücker space corresponding to the scene edges. He
shows that each cell of the arrangement corresponds to lines which intersect the same set of triangles. The
whole 5D arrangement has to be constructed, but then only cells intersecting the Plücker hypersurface are
considered. He uses results by Clarkson [Cla87] on point location using random sampling to build a point-
location data-structure on this arrangement. Shooting a ray then consists in locating the corresponding line in
Plücker space. Other results on ray shooting can be found in [Pel90, PS92, Pel94].

This method is different in spirit from ray-classification where the object-beam classification is calculated
in object space. Here the edges of the scene are transformed into hyperplanes in Plücker space.

The first use of Plücker space in computational geometry can be found. in a paper by Chazelle et al.
[CEG+96]. The orientation of lines in space also has implications on the study of cycles in depth order as
studied by Chazelle et al. [CEG+92] who estimate the possible number of cycles in a scene . Other references
on lines in space and the use of Plücker coordinates can be found in the survey by Pellegrini [Pel97b].

3.3 Implementations in computer graphics

Teller [Tel92a] has implemented the computation of the antipenumbra cast by a polygonal source through a
sequence of polygonal openings portals (i.e. the part of space which may be visible from the source). He
computes the polytope defined by the edges of all the openings, then intersects this polytope with the Plücker
hypersurface, obtaining the critical line sets and extremal stabbing lines bounding the antipenumbra (see Fig.
8.12 for an example).

Figure 8.12: Antipenumbra cast by a triangular light source through a sequence of three polygonal openings.
EEE boundaries are in red (image courtesy of Seth J. Teller, University of Berkeley).

He however later noted [TH93] that this algorithm is not robust enough for practical use.
Nevertheless, in this same paper he and Hanrahan [TH93] actually used Plücker coordinates to classify the

visibility of objects with respect to parts of the scene in a global illumination context for architectural scenes
(see section 7 of chapter 5). They avoid robustness issues because no geometric construction is performed in
5D space (like computing the intersection between two hyperplanes), only predicates are evaluated (“is this
point above this hyperplane?”).

4 Stochastic approaches

This section surveys methods which perform visibility calculation using a probabilistic sampling in line-space.
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4.1 Integral geometry

The most relevant tool to study probability over sets of lines is integral geometry introduced by Santalo [San76].
Defining probabilities and measure in line-space is not straightforward. The most natural constraint is to impose
that this measure be invariant under rigid motion. This defines a unique measure in line-space, up to a scaling
factor.

Probabilities can then be computed on lines, which is a valuable tool to understand ray-casting. For exam-
ple, the probability that a line intersects a convex object is proportional to its surface.

An unexpected result of integral geometry is that a uniform sampling of the lines intersecting a sphere can
be obtained by joining pairs of points uniformly distributed on the surface of the sphere (note that this is not
true in 2D).

The classic parameterization of lines x = az+ p, y = bz+q (similar to the two plane parameterization of Fig.
3.2(b) page 25) has density dadbd pdq

(1+a2+b2)2 . If a,b, p,q are uniformly and randomly sampled, this formula expresses

the probability that a line is picked. It also expresses the variation of sampling density for light-field approaches
described in section 1.5. Regions of line space with large values of a,b will be more finely sampled. Intuitively,
sampling is higher for lines that have a gazing angle with the two planes used for the parameterization.

Geometric probability is also covered in the book by Solomon [Sol78].

4.2 Computation of form factors using ray-casting

Most radiosity implementations now use ray-casting to estimate the visibility between two patches, as intro-
duced by Wallace et al. [WEH89]. A number of rays (typically 4 to 16) are cast between a pair of patches. The
number of rays can vary, depending on the importance of the given light transfer. Such issues will be treated in
section 1.1 of chapter 9.

The integral geometry interpretation of form factors has been studied by Sbert [Sbe93] and Pellegrini
[Pel97a]. They show that the form factor between two patches is proportional the probability that a line in-
tersecting the first one intersects the second. This is the measure of lines intersecting the two patches divided
by the measure of lines intersecting the first one. Sbert [Sbe93] proposes some estimators and derives expres-
sions for the variance depending on the number of rays used.

4.3 Global Monte-Carlo radiosity

Buckalew and Fussel [BF89] optimize the intersection calculation performed on each ray. Indeed, in global
illumination computation, all intersections of a line with the scene are relevant for light transfer. As shown
in Fig. 8.13, the intersections can be sorted and the contribution computed for the interaction between each
consecutive pair of objects. They however used a fixed number of directions and a deterministic approach.

Sbert [Sbe93] introduced global Monte-Carlo radiosity. As in the previous approach all intersections of a
line are taken into account, but a uniform random sampling of lines is used, using pairs of points on a sphere.

Related results can be found in [Neu95, SPP95, NNB97]. Efficient hierarchical approaches have also been
proposed [TWFP97, BNN+98].

4.4 Transillumination plane

Lines sharing the same direction can be treated simultaneously in the previous methods. This results in a sort
of orthographic view where light transfers are computed between consecutive pairs of objects overlapping in
the view, as shown in Fig. 8.14.

The plane orthogonal to the projection direction is called the transillumination plane. An adapted hidden-
surface removal method has to be used. The z-buffer can be extended to record the z values of all objects
projecting on a pixel [SKFNC97], or an analytical method can be used [Pel99, Pel97a].
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Figure 8.13: Global Monte-Carlo radiosity. The intersection of the line in bold with the scene allows the
simulation of light exchanges between the floor and the table, between the table and the cupboard and between
the cupboard and the ceiling.

Figure 8.14: Transillumination plane. The exchanges for one direction (here vertical) are all evaluated simulta-
neously using an extended hidden surface removal algorithm.
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CHAPTER 9

Advanced issues

Au reste, il n’est pas inutile de remarquer que tout
ce qu’on démontre, soit dans l’optique, soit dans la
perspective sur les ombres des corps, est exact à la
vérité du côté mathématique, mais que si on traite cette
matière physiquement, elle devient alors fort différente.
L’explication des effets de la nature dépend presque tou-
jours d’une géométrie si compliquée qu’il est rare que
ces effets s’accordent avec ce que nous en aurions at-
tendu par nos calculs.

FORMEY, article sur l’ombre de l’Encyclopédie.

E NOW TREAT two issues which we believe crucial for visibility computations and which
unfortunately have not received much attention. Section 1 deals with the control of the
precision of computations either to ensure that a required precision is satisfied, or to
simplify visibility information to make it manageable. Section 2 treats methods which
attempt to take advantage of temporal coherence in scenes with moving objects.

1 Scale and precision

Visibility computations are often involved and costly. We have surveyed some approximate methods which may
induce artifacts, and some exact methods which are usually resource-intensive. It is thus desirable to control
the error in the former, and trade-off time versus accuracy in the latter. Moreover, all visibility information is
not always relevant, and it can be necessary to extract what is useful.

1.1 Hierarchical radiosity: a paradigm for refinement

Hierarchical radiosity [HSA91] is an excellent paradigm of refinement approaches. Computational resources
are spent for “important” light exchanges. We briefly review the method and focus on the visibility problems
involved.

91
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In hierarchical radiosity the scene polygons are adaptively subdivided into patches organised in a pyramid.
The radiosity is stored using Haar wavelets [SDS96]: each quadtree node stores the average of its children.
The light exchanges are simulated at different levels of precision: exchanges will be simulated between smaller
elements of the quadtree to increase precision as shown in Fig. 9.1. Clustering improves hierarchical radiosity
by using a full hierarchy which groups clusters of objects [SAG94, Sil95].

A

B

C

hierarchy
of C

Figure 9.1: Hierarchical radiosity. The hierarchy and the exchanges arriving at C are represented. Exchanges
with A are simulated at a coarser level, while those with B are refined.

The crucial component of a hierarchical radiosity system is the refinement criterion (or oracle) which
decides at which level a light transfer will be simulated. Originally, Hanrahan et al. [HSA91] used a radiometric
criterion (amount of energy exchanged) and a visibility criterion (transfers with partial visibility are refined
more). This results in devoting more computational resources for light transfers which are important and in
shadow boundary regions. See also [GH96].

For a deeper analysis and treatment of the error in hierarchical radiosity, see e.g., [ATS94, LSG94, GH96,
Sol98, HS99].

1.2 Other shadow refinement approaches

The volumetric visibility method presented in section 1.3 of chapter 5 is also well suited for a progressive
refinement scheme. An oracle has to decide at which level of the volumetric hierarchy the transmittance has to
be considered. Sillion and Drettakis [SD95] use the size of the features of the shadows.

The key observation is that larger object which are closer to the receiver cast more significant shadows, as
illustrated by Fig. 9.2. They moreover take the correlation of multiple blockers into account using an image-
based approach. The objects inside a cluster are projected in a given direction onto a plane. Bitmap erosion
operators are then used to estimate the size of the connected portions of the blocker projection. This can be
seen as a first approximation of the convolution method covered in section 6 of chapter 6 [SS98a].

Soler and Sillion [SS96b, Sol98] propose a more complete treatment of this refinement with accurate error
bounds. Unfortunately, the bounds are harder to derive in 3D and provide looser estimates.

The refinement of shadow computation depending on the relative distances of blockers and source has also
been studied by Asensio [Ase92] in a ray-tracing context.

Telea and van Overveld [Tv97] efficiently improve shadows in radiosity methods by performing costly
visibility computations only for blockers which are close to the receiver.

1.3 Perception

The goal of most image synthesis methods is to produce images which will be seen by human observers. Gibson
and Hubbold [GH97] thus perform additional computation in a radiosity method only if they may induce a
change which will be noticeable. Related approaches can be found in [Mys98, BM98, DDP99, RPG99].
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source

Figure 9.2: Objects which are larger and closer to the receiver cast more significant shadows. Note that the left
hand sphere casts no umbra, only penumbra.

Perceptual metrics have also been applied to the selection of discontinuities in the illumination function
[HWP97, DDP99].

1.4 Explicitly modeling scale

One of the major drawbacks of aspect graphs [FMA+92] is that they have been defined for perfect views: all
features are taken into account, no matter the size of their projection.

The Scale-space aspect graph has been developed by Eggert et al. [EBD +93] to cope with this. They
discuss different possible definitions of the concept of “scale”. They consider that two features are not distin-
guishable when their subtended angle is less than a given threshold. This defines a new sort of visual event,
which corresponds to the visual merging of two features. These are circles in 2D (the set of points which form
a given angle with a segment is a circle). See Fig. 9.3.

Figure 9.3: Scale-space aspect graph in 2D using perspective projection for the small object in grey. Features
which subtend an angle of less than 4◦ are considered indistinguishable. The circles which subdivide the plane
are the visual events where features of the object visually merge.

Scale (the angle threshold) defines a new dimension of the viewpoint space. Fig. 9.3 in fact represents a slice
scale = 4◦ of the scale-space aspect graph. Cells of this aspect graph have a scale extent, and their boundaries
change with the scale parameter. This approach allows an explicit model of the resolution of features, at the
cost of an increases complexity.
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Shimshoni and Ponce [SP97] developed the finite resolution aspect graph in 3D. They consider ortho-
graphic projection and a single threshold. When resolution is taken into account, some accidental views are
likely to be observed: An edge and a vertex seem superimposed in the neighbourhood of the exact visual event.
Visual events are thus doubled as illustrated in Fig. 9.4.

V

E

P

Q

(a) (b)

1

2

3

4

Figure 9.4: Finite resolution aspect graph. (a) The EV event is doubled. Between the two events (viewpoint 2
and 3), E and V are visually superimposed. (b) The doubled event on the viewing sphere.

For the objects they test, the resulting finite resolution aspect graph is larger. The number events discarded
because the generators are merged does not compensate the doubling of the other events. However, tests on
larger objects could exhibit different results.

See also the work by Weinshall and Werman on the likelihood and stability of views [WW97].

1.5 Image-space simplification for discontinuity meshing

Stewart and Karkanis [SK98] propose a finite resolution construction of discontinuity meshes using an image-
space approach. They compute views from the vertices of the polygonal source using a z-buffer. The image is
segmented to obtain a visibility map. The features present in the images are used as visual event generators.

This naturally eliminates small objects or features since they aggregate in the image. Robustness problems
are also avoided because of the image-space computations. Unfortunately, only partial approximate disconti-
nuity meshes are obtained, no backprojection computation is proposed yet.

2 Dynamic scenes

We have already evoked temporal coherence in the case of a moving viewpoint in a static scene (section 4.2
of chapter 7). In this section we treat the more general case of a scene where objects move. If the motions
are continuous, and especially if few objects move, there is evidence that computation time can be saved by
exploiting the similarity between consecutive timesteps.

In most cases, the majority of the objects are assumed static while a subset of objects actually move. We can
distinguish cases where the motion of the objects is known in advance, and those where no a priori information
is known, and thus updates must be computed on a per frame basis.

Different approaches can be chosen to take advantage of coherence:

• The computation is completely re-performed for a sub-region of space;

• The dynamic objects are deleted (and the visibility information related to them is discarded) then re-
inserted at their new position;

• A validity time-interval is computed for each piece of information;
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• The visibility information is “smoothly updated”.

2.1 Swept and motion volumes

A swept volume is the volume swept by an object during a time interval. Swept volumes can also be used to
bound the possible motion of an object, especially in robotics where the degrees of freedom are well defined
[AA95]. These swept volumes are used as static blockers.

A motion volume is a simplified version of swept volumes similar to the shafts defined in section 6.1 of
chapter 5. They are simple volume which enclose the motion of an object. Motion volumes were first used in
radiosity by Baum et al. [BWCG86] to handle the motion of one object. A hemicube is used for form-factor
computation. Pixels where the motion volume project are those which need recomputation.

Shaw [Sha97] and Drettakis and Sillion [DS97] determine form factors which require recomputation using
a motion volume-shaft intersection technique.

Sudarsky and Gotsman [SG96] use motion volumes (which they call temporal bounding volumes) to per-
form occlusion culling with moving objects. They alleviate the need to update the spatial data-structure (BSP
or octree) for each frame, because these volumes are used in place of the objects, making computations valid
for more than one frame.

2.2 4D methods

Some methods have been proposed to speed-up ray-tracing animations using a four dimensional space-time
framework developed by Glassner [Gla88]. The temporal extent of ray-object intersections is determined,
which avoids recomputation when a ray does not intersect a moving object. See also [MDC93, CCD91] for
similar approaches.

Ray-classification has also been extended to 6D (3 for the origin of a ray, 2for its direction, and 1 for time)
[Qua96, GP91].

Global Monte-Carlo radiosity presented in section 4.3 of chapter 8 naturally extends to 4D as demonstrated
by Besuievsky et al [BS96]. Each ray-static object intersection is used for the whole length of the animation.
Only intersections with moving objects require recomputation.

2.3 BSP

BSP trees have been developed for rapid view computation in static scenes. Unfortunately, their construction
is a preprocessing which cannot be performed for each frame.

Fuchs et al. [FAG83] consider pre-determined paths and place bounding planes around the paths. Torres
[Tor90] builds a multi-level BSP tree, trying to separate objects with different motion without splitting them.

Chrysanthou and Slater [CS92, CS95, CS97] remove the moving objects from the database, update the BSP
tree, and then re-introduce the object at its new location. The most difficult part of this method is the update of
the BSP tree when removing the object, especially when the polygons of the object are used at a high level of
the tree as splitting planes. In this case, all polygons which are below it in the BSP-tree have to be updated in
the tree. This approach was also used to update limits of umbra and penumbra [CS97].

Agarwal et al. [AEG98] propose an algorithm to maintain the cylindrical BSP tree which we have presented
in section 1.4 of chapter 5. They compute the events at which their BSP actually needs a structural change. This
happens when a triangle becomes vertical, when an edge becomes parallel to the yz plane, or when a triangle
enters or leaves a cell defined by the BSP tree.

2.4 Aspect graph for objects with moving parts

Bowyer et al. [EB93] discuss the extension of aspect graphs for articulated assemblies. The degrees of freedom
of the assembly increase the dimensionality of viewpoint space (which they call aspect space). For example, if
the assembly has only one translational degree of freedom and if 3D perspective is used, the aspect graph has
to be computed in 4D, 3 dimensions for the viewpoint and one for translation. This is similar to the scale-space
aspect graph presented in section 1.4 where scale increases dimensionality.
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Accidental configurations correspond to values of the parameters of the assembly where the aspect graph
changes. They occur at a generalization of visual events in the higher dimensional aspect space. For example
when two faces become parallel.

Two extensions of the aspect graph are proposed, depending on the way accidental configurations are
handled. They can be used to partition aspect space like in the standard aspect graph definition. They can also
be used to partition first the configuration space (in our example, it would result in intervals of the translational
parameter), then a different aspect graph is computed for each cell of the configuration space partition. This
latter approach is more memory demanding since cells of different aspect graphs are shared in the first approach.
Construction algorithms are just sketched, and no implementation is reported.

2.5 Discontinuity mesh update

Loscos and Drettakis [LD97] and Worall et al. [WWP95, WHP98] maintain a discontinuity mesh while one
of the blockers moves. Limits of umbra and penumbra move smoothly except when an object starts or stops
casting shadows on another one. Detecting when a shadow limit goes off an object is easy.

To detect when a new discontinuity appears on one object, the discontinuities cast on other objects can be
used as illustrated in Fig. 9.5.

v
e

(a) (b)

Figure 9.5: Dynamic update of limits of shadow. The situation where shadows appear on the moving object can
be determined by checking the shadows on the floor. This can be generalized to discontinuity meshes (after
[LD97]).

2.6 Temporal visual events and the visibility skeleton

In chapter 2 and 3 of [Dur99], we have presented the notion of a temporal visual event. Temporal visual events
permit the generalization of the results presented in the previous section. They correspond to the accidental
configurations studied for the aspect graph of an assembly.

Temporal visual events permit the update of the visibility skeleton while objects move in the scene. This is
very similar to the static visibility skeleton, since temporal visual events describe adjacencies which determine
which nodes and arcs of the skeleton should be modified.

Similarly, a catalogue of singularities has been developed for moving objects, defining a temporal visibility
complex.



CHAPTER 10

Conclusions of the survey

Ils ont tous gagné !

Jacques MARTIN

URVEYING work related to visibility reveals a great wealth of solutions and techniques. The
organisation of the second part of this thesis has attempted to structure this vast field. We
hope that this survey will be an opportunity to derive new methods or improvements from
techniques developed in other fields. Considering a problem under different angles is a pow-
erful way to open one’s mind and find creative solutions. We again invite the reader not to

consider our classification as restrictive; on the contrary, we suggest that methods which have been presented
in one space be interpreted in another space. In what follows, we give a summary of the methods which we
have surveyed, before presenting a short discussion.

1 Summary

In chapter 2 we have presented visibility problems in various domains: computer graphics, computer vision,
robotics and computational geometry.

In chapter 3 we have propose a classification of these methods according to the space in which the com-
putations are performed: object space, image space, viewpoint space and line-space. We have described the
visual events and the singularities of smooth mappings which explain “how” visibility changes in a scene: the
appearance or disappearance of objects when an observer moves, the limits of shadows, etc.

We have briefly surveyed the classic hidden-part removal methods in chapter 4.
In chapter 5 we have dealt with object-space methods. The two main categories of methods are those which

use a “regular” spatial decomposition (grid, hierarchy of bounding volumes, BSP trees), and those which use
frusta or shafts to characterize visibility. Among the latter class of methods, the main distinction is between
those which are interested in determining if a point (or an object) lies inside the frustum or shaft, and those
which compute the boundaries of the frustum (e.g., shadow boundaries). Fundamental data-structures have also
been presented: The 2D visibility graph used in motion planning links all pairs of mutually visible vertices of a
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planar polygonal scene, and the visual hull of an object A represents the largest object with the same occlusion
properties as A.

Images-space methods, surveyed in chapter 6 perform computation directly in the plane of the final image,
or use an intermediate plane. Most of them are based on the z-buffer algorithm.

Chapter 7 has presented methods which consider viewpoints and the the visibility properties of the corre-
sponding views. The aspect graph encodes all the possible views of an object. The viewpoints are partitioned
into cells where a view is qualitatively invariant, that is, the set of visible features remains constant. The
boundaries of such cells are the visual events. This structure has important implications and applications in
computer vision, robotics, and computer graphics. We have also presented methods which optimize the view-
point according to the visibility of a feature, as well as methods based on visual events which take advantage
of temporal coherence by predicting when a view changes.

In chapter 8 we have surveyed work in line or ray space. We have presented methods which partition the
rays according to the object they see. We have seen that visual events can be encoded by lines in line-space. A
powerful dualisation has been studied which maps lines into five dimensional points, allowing for efficient and
elegant visibility characterization. We have presented some elements of probability over sets of lines, and their
applications to lighting simulation.

Finally, in the previous chapter we have discussed two important issues: precision and moving objects. We
have studied techniques which refine their computations where appropriate, as well as techniques which attempt
to cope with intensive and intricate visibility information by culling too fine and unnecessary information.
Techniques developed to deal with dynamic scenes include swept or motion volumes, 4D method (where time
is the fourth dimension), and smooth updates of BSP trees or shadow boundaries.

Table 10.1 summarizes the techniques which we have presented, by domain and space.

2 Discussion

A large gap exists between exact and approximate methods. Exact methods are often costly and prone to
robustness problems, while approximate methods suffer from aliasing artifacts. Smooth trade-off and efficient
adaptive approximate solutions should be developed. This requires both to be able to refine a computation and
to efficiently determine the required accuracy.

Visibility with moving objects and temporal coherence have received little attention. Dynamic scenes are
mostly treated as successions of static timesteps for which everything is recomputed from scratch. Solutions
should be found to efficiently identify the calculations which actually need to be performed after the movement
of objects.

As evoked in the introduction of this survey, no practical guide to visibility techniques really exists. Some
libraries or programs are available (see for example appendix 12) but the implementation of reusable visibility
code in the spirit of C-GAL [FGK+96] would be a major contribution, especially in the case of 3D visibility.
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Table 10.1: Recapitulation of the techniques presented by field and by space.
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CHAPTER 11

Some Notions in Line Space

Plücker coordinates

Consider a directed line � in 3D defined by two points P(xP,yP,zP) and Q(xQ,yQ,zQ). The Plücker coordinates
[Plü65] of � are: 



π�0

π�1

π�2

π�3

π�4

π�5




=




xPyQ − yPxQ

xPzQ − zPxQ

xP − xQ

yPzQ − zPyQ

zP − zQ

yQ − yP




(The signs and order may vary with the authors). These coordinates are homogenous, any choice of P and Q
will give the same Plücker coordinates up to a scaling factor (Plücker space is thus a 5D projective space).

The dot product between two lines a and b with Plücker duals Π a and Πb is defined by

Πa �Πb = πa0πb4 + πa1πb5 + πa2πb3 + πa4πb0 + πa5πb1 + πa3πb2

The sign of the dot products indicates the relative orientation of the two lines. If the dot product is null, the
two lines intersect. The equation Πa �Π� = 0 defines the hyperplane associated with a.

The Plücker hypersurface or Grassman manifold or Klein quadric is defined by

Π��Π� = 0
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CHAPTER 12

Online Ressources

1 General ressources

An index of computer graphics web pages can be found at
http://www-imagis.imag.fr/˜Fredo.Durand/book.html

A lot of computer vision ressources are listed at
http://www.cs.cmu.edu/ cil/vision.html
A commented and sorted vision bibliography:
http://iris.usc.edu/Vision-Notes/bibliography/contents.html
An excellent Compendium of Computer Vision:
http://www.dai.ed.ac.uk/CVonline/

For robotics related pages, see
http://www-robotics.cs.umass.edu/robotics.html
http://www.robohoo.com/

Many sites are dedicated to computational geometry, e.g.:
http://www.ics.uci.edu/˜eppstein/geom.html
http://compgeom.cs.uiuc.edu/˜jeffe/compgeom/

Those interested in human and animal vision will find several links at:
http://www.visionscience.com/.

An introduction to perception is provided under the form of an excellent web book at:
http://www.yorku.ca/eye/

2 Available code.

CGAL is a robust and flexible computational geometry librairy
http://www.cs.ruu.nl/CGAL
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Nina Amenta maintains some links to geometrical softwares:
http://www.geom.umn.edu/software/cglist/welcome.html

The implementation of Luebke and George’s online portal occlusion-culling technique is available at:
http://www.cs.virginia.edu/˜luebke/visibility.html

Electronic articles on shadows, portals, etc.:
http://www.flipcode.com/features.htm

Information on Open GL, including shadow computation:
http://reality.sgi.com/opengl/

Visibility graph programs can be found at:
http://www.cs.uleth.ca/˜wismath/vis.html
http://cs.smith.edu/˜halef/research.html
http://willkuere.informatik.uni-wuerzburg.de/ lupinho/java.html

Many ray-tracer are available e.g.:
http://www.povray.org/
http://www-graphics.stanford.edu/- cek/rayshade/rayshade.html
http://www.rz.tu-ilmenau.de/˜juhu/GX/intro.html (with different acceleration schemes, including ray-
classification)

A radiosity implementation:
http://www.ledalite.com/software/software.htm

RenderPark provides many global illumination methods, such as radiosity or Monte-Carlo path-tracing:
http://www.cs.kuleuven.ac.be/cwis/research-/graphics/RENDERPARK/

Aspect graphs:
http://www.dai.ed.ac.uk/staff/-personal pages/eggertd/software.html

BSP trees:
http://www.cs.utexas.edu/users/atc/

A list of info and links about BSP:
http://www.ce.unipr.it/ marchini/jaluit.html

Mel Slater’s shadow volume BSP:
ftp://ftp.dcs.qmw.ac.uk/people/mel/BSP/
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swallowtail 29
t-vertex 28, 32, 37
tangent crossing 28
view update 28, 32

sketching shadow 8, 53
skewed projection 84
soft shadow 8, 32, 82, 92

boundary 49–51
convolution 63, 92
radiosity 12, 60
ray-tracing 47, 59, 64
shadow-map 59, 63
supersampling 45
visible part of the source 8, 24, 31, 32, 64

sound propagation 9, 60
beam-tracing 47

space partition 40, 48, 61
space-time 95
span 36
spatial subdivision (see space partition), 40
stab-tree 54
stabbing line 20, 54, 83, 84, 86
stable views (see aspect graph), 65
strategy tree 70
sub-sampling 35, 36, 59
supporting plane 50
swallowtail 29
swath 27
swept volume 95

T

target tracking 18, 76
temporal bounding volume 95
temporal coherence 76–77, 85, 94
temporal visibility complex 96
temporal visual event 96
terrain 6, 62
texel 41
tiling 57
tracking (see target tracking), 18
transillumination plane 88
transmittance 40
transparency 35, 36
transparent vs. opaque (see opaque vs. transpar-

ent), 28
transversal (see stabbing line), 20
trapezoidal decomposition 33

U

umbra (see shadow), 8

V

view classes (see aspect graph), 65
view computation 7, 19
view graph (see aspect graph), 65
view warping 12, 48, 59, 62
view-dependent 10
view-independent 11
viewability matrix 75
viewer-centered representation 13, 65
viewing data 65, (see aspect graph), 65
viewing sphere 24
viewing sphere tessellation 66, 75, 83
viewpoint constraint 51
viewpoint planning (see sensor placement), 15
viewpoint set 75
viewpoint space partition 65
visibility complex 80, 81

dynamic update 96
visibility culling 9
visibility event (see visual event), 26
visibility graph 17, 20, 42, 45

construction 43, 80
visibility map 31, 37
visibility skeleton 83

dynamic update 96
vision 13–16
visual event 26–28

2D 27, 30
aspect graph 65
discontinuity meshing 50, 72, 73
EEE 27, 44, 50, 67, 72, 84, 86
EV 26, 49–51, 72, 76, 83
face 27
generator 27
line-space 83, 87
moving object 95
occlusion-free viewpoint 26, 51
shadow boundary 26, 45, 50, 72, 73
temporal 95, 96
view update 26, 76, 77
visual hull 44

visual hull 14, 44
visual potential (see aspect graph), 65
volume of occlusion 48
volumetric visibility 40, 92
voxel 40

W

walkthrough 9, 11, 55
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volumetric visibility 41
warping 12, 48, 59, 62
window (Warnock) 33

Z

z-buffer 35, 58–62
ZZ-buffer 59
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[HM96] André Hinkenjann and Heinrich Müller. Hierarchical blocker trees for global visibility calculation. Re-
search Report 621/1996, University of Dortmund, Universität Dortmund, 44221 Dortmund, Germany, Au-
gust 1996. http://ls7-www.cs.uni-dortmund.de/˜hinkenja/. (cited on page 82)

[HMC+97] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. Accelerated occlusion culling us-
ing shadow frusta. In Proceedings of the 13th International Annual Symposium on Computational Ge-
ometry (SCG-97), pages 1–10, New York, June4–6 1997. ACM Press. http://www.cs.unc.edu/ hud-
son/projects/occlusion/scg97.ps. (cited on page 48)

[HMK+97] Lichan Hong, Shigeru Muraki, Arie Kaufman, Dirk Bartz, and Taosong He. Virtual voyage: Interactive
navigation in the human colon. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual
Conference Series, pages 27–34. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-896-7.
(cited on page 48)



REFERENCES 131

[Hof92] Georg Rainer Hofmann. Who invented ray tracing? a historical remark. The Visual Computer, 9(1):120–
125, 1992. (cited on page 37)

[HS99] Nicolas Holzschuch and Franois X. Sillion. An exhaustive error-bounding algorithm for hierarchical ra-
diosity. Computer Graphics Forum, 1999. to appear, http://www.loria.fr/˜holzschu. (cited on page 92)

[HSA91] Pat Hanrahan, David Salzman, and Larry Aupperle. A rapid hierarchical radiosity algorithm. In Thomas W.
Sederberg, editor, Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 197–206, July
1991. (cited on pages 91, 92)

[HSD94] Nicolas Holzschuch, Francois Sillion, and George Drettakis. An Efficient Progressive Refinement Strategy
for Hierarchical Radiosity. In Fifth Eurographics Workshop on Rendering, pages 343–357, Darmstadt,
Germany, June 1994. http://www.loria.fr/˜holzschu. (cited on page 11)

[HT96] Stephen Hardt and Seth Teller. High-fidelity radiosity rendering at interactive rates. In Xavier Pueyo and
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[Plü65] J. Plücker. On a new geometry of space. Phil. Trans. Royal Soc. London, 155:725–791, 1865. (cited on
pages 85, 101)

[Pop94] Arthur R. Pope. Model-based object recognition: A survey of recent research. Technical
Report TR-94-04, University of British Columbia, Computer Science Department, January 1994.
http://www.cs.ubc.ca/tr/1994/TR-94-04. (cited on page 13)

[Pot87] Michael Potmesil. Generating octree models of 3D objects from their silhouettes in a sequence of images.
Computer Vision, Graphics, and Image Processing, 40(1):1–29, October 1987. (cited on page 14)

[PPK92] S. Petitjean, J. Ponce, and D.J. Kriegman. Computing exact aspect graphs of curved objects: Algebraic
surfaces. IJCV, 1992. (cited on page 69)

[PPR99] Helmut Pottmann, Martin Peternell, and Bahram Ravani. An introduction to line geometry with application.
Computer-Aided Design, 31:3–16, 1999. (cited on page 86)

[PRJ97] Pierre Poulin, Karim Ratib, and Marco Jacques. Sketching shadows and highlights to position lights. In
Proceedings of Computer Graphics International 97, pages 56–63. IEEE Computer Society, June 1997.
(cited on page 53)

[PS92] Pellegrini and Shor. Finding stabbing lines in 3-space. GEOMETRY: Discrete & Computational Geometry,
8, 1992. (cited on page 87)

[PV96a] Pocchiola and Vegter. Topologically sweeping visibility complexes via pseudotriangulations. GEOMETRY:
Discrete & Computational Geometry, 16, 1996. (cited on page 80)

[PV96b] M. Pocchiola and G. Vegter. The visibility complex. Internat. J. Comput. Geom. Appl., 1996. special issue
devoted to ACM-SoCG’93. (cited on page 80)

[PY90] Paterson and Yao. Efficient binary space partitions for hidden-surface removal and solid modeling. GE-
OMETRY: Discrete & Computational Geometry, 5, 1990. (cited on page 41)

[Qua96] Matthew Quail. Space time ray-tracing using ray classification. Master’s thesis, Macquarie University,
November 1996. (cited on page 95)

[RA96] Michael Reed and Peter K. Allen. Automated model acquisition using volumes of occlusion. In IEEE
International Conference on Robotics and Automation, April 1996. http://www.cs.columbia.edu/robotics/.
(cited on page 48)

[Rie87] J.H. Rieger. On the classification of views of piecewise smooth objects. Image and Vision Computing,
1987. (cited on page 29)

[Rie90] J. H. Rieger. The geometry of view space of opaque objects bounded by smooth surfaces. Artificial
Intelligence(1-2), 44:1–40, 1990. (cited on page 29)

[Rie92] J.H. Rieger. Global bifurcation sets and stable projections of non-singular algebraic surface. IJCV, 1992.
(cited on page 69)

[Rie93] J. H. Rieger. Computing view graphs of algebraic surfaces. Journal of Symbolic Computation, 16(3):259–
272, September 1993. (cited on page 69)

[Riv95] S. Rivière. Topologically sweeping the visibility complex of polygonal scenes. In Comm. 11th Annu. ACM
Sympos. Computat. Geom., 1995. (cited on page 80)

[Riv97] S. Rivière. Calculs de visibilit dans un environnement polygonal 2D. PhD thesis, Universit Joseph Fourier
(Grenoble), 1997. PhD Thesis. (cited on page 80)



REFERENCES 139

[RM97] D.R. Roberts and A.D. Marshall. A review of viewpoint planning. Technical Report 97007, Univeristy
of Wales, Cardiff, August 1997. http://www.cs.cf.ac.uk/Research/Rrs/1997/detail007.html. (cited on
page 16)

[Rob63] L.G. Roberts. Machine perception of three dimensional solids. Technical Report TR-315, Lincoln Lab-
oratory, MIT, Cambridge, MA, May 1963. Also in Tippet, J.T et al., eds., Optical and Electro Optical
Information Processing, MIT Press, Cambridge, MA, 1964. (cited on page 32)

[Rog97] David F. Rogers. Procedural Elements for Computer Graphics. Mc Graw-Hill, 2 edition, 1997. (cited on
pages 7, 31, 36, 40, 61)

[RPG99] Mahesh Ramasubramanian, Sumanta N. Pattanaik, and Donald P. Greenberg. A perceptually based physical
error metric for realistic image synthesis. In Computer Graphics (SIGGRAPH ’99 Proceedings), August
1999. (cited on page 92)

[RS90] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both forwards and backwards. Pacific
Journal of Mathematics, 145(2), 1990. (cited on page 43)

[RSC87] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering antialiased shadows with depth
maps. In Maureen C. Stone, editor, Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21(4),
pages 283–291, July 1987. (cited on page 59)

[RW80] Steven M. Rubin and Turner Whitted. A 3-dimensional representation for fast rendering of complex scenes.
In Computer Graphics (SIGGRAPH ’80 Proceedings), volume 14(3), pages 110–116, July 1980. (cited on
page 40)

[SAG94] Brian Smits, James Arvo, and Donald Greenberg. A clustering algorithm for radiosity in complex envi-
ronments. In Andrew Glassner, editor, Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–29,
1994), Computer Graphics Proceedings, Annual Conference Series, pages 435–442. ACM SIGGRAPH,
ACM Press, July 1994. ISBN 0-89791-667-0. (cited on page 92)
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Object-Space Visibility Culling

Claudio  T.  Silva

Information Visualization Research Department
AT&T Labs -Research

csilva@research.att.com

http://www.research.att.com/~csilva

Some slides as well as material for slides have been provided by
Satyan Coorg (MIT/IBM), Sigal Dahan (Tel-Aviv),                              

David Luebke (UNC/Virginia), Jim Klosowski (IBM),                                 
and Dudu Sayag (Tel-Aviv)

Visibility Problems

Given a collection of triangles:

Visibility Determination
Find the visible fragments:

Visibility Ordering 
Find a “visibility” labeling

of the fragments:
1

2
3
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High-Depth Complexity Scenes

Z-buffer Algorithm

By discretizing the domain, Z-buffer has essentially
linear complexity in the number of primitives

The exact complexity of the output can be quadratic:
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Depth-Complexity 

View-Frustum Visibility-Culling

Approximate Visibility Determination

Develop algorithms that are output sensitive, that is, if out of 
the N triangles, only K of them are visible, the algorithm 
has complexity that depends more closely on K

Drop the exact visibility requirement, and instead attempt to 
develop algorithms that estimate the triangles which have 
visible fragments

Algorithms that overestimate the visible fragments, the so 
called conservative visibility algorithms
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Graphics Hardware Performance
• Current graphics hardware “peaks” at 

approximate 15 million triangles per second, but 
actually only renders 1-3 million triangles per 
second

• Real-time usually means 30Hz (at least 15 frames 
per second)

• 1M-3M at 30Hz = 33K-100K triangles per frame
• 33-100 thousand triangles is not much!

• Hardware will improve, but so will datasets, mostly 
due to better 3D scanning  and modeling 
technology

Talk Summary

• Cells and portals 
– Teller and Sequin, Siggraph 91
– Luebke and Georges, I3D 95

• Visibility culling with large occluders
– Coorg and Teller, SoCG 96 and I3D 97
– Hudson et al, SoCG 97

• Prioritized-Layer Projection Algorithm
– Klosowski and Silva Vis99 and TVCG00
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Talk Summary

• Cells and portals 
– Teller and Sequin, Siggraph 91
– Luebke and Georges, I3D 95

• Visibility culling with large occluders
– Coorg and Teller, SoCG 96 and I3D 97
– Hudson et al, SoCG 97

• Prioritized-Layer Projection Algorithm
– Klosowski and Silva Vis99 and TVCG00

Cells & Portals
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Teller and Sequin’s Approach

(1) Decompose space into convex cells
(2) For each cell, identify its boundary edges into 

two sets: opaque or portal
(3) Precompute visibility among cells
(4) During viewing (eg, walkthrough phase), use 

the precomputed potentially visible polygon set 
(PVS) of each cell to speed-up rendering

Space Subdivision

Input Scene:

Convex subdivision:

Generated by computing a k-d tree of the input faces
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Determining Adjacent Information

Computing the PVS of a cell

S•R ≥ 0, ∀ L ∈ L
S•R ≤ 0,      ∀ R ∈ RLinear programming problem:

Find_Visible_Cells(cell C, portal sequence P, visible cell set V)
V=V ∪ C
for each neighbor N of C

for each portal p connecting C and N
orient p from C to N
P’ = P concatenate p
if Stabbing_Line(P’) exists then

Find_Visible_Cells (N, P’, V)
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Eye-to-Cell Visibility

The eye-to-cell visibility of any observer is 
a subset of the cell-to-cell visibility for the cell 
containing the observer

Results
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Luebke and Georges, I3D 95

• Instead of pre-processing 
all the PVS calculation, it is 
possible to use image-space 
portals to make the 
computation easier

• No preprocessing

• Can be used in a dynamic
setting

pfPortals
code available at http://www.cs.virginia.edu/~luebke

• Depth-first adjacency graph traversal
– Render cell containing viewer
– Treat portals as special polygons

• If portal is visible, render adjacent cell
• But clip to boundaries of portal!
• Recursively check portals in that cell against new 

clip boundaries (and render) 

– Each visible portal sequence amounts to a 
series of nested portal boundaries
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Talk Summary

• Cells and portals 
– Teller and Sequin, Siggraph 91
– Luebke and Georges, I3D 95

• Visibility culling with large occluders
– Coorg and Teller, SoCG 96 and I3D 97
– Hudson et al, SoCG 97

• Prioritized-Layer Projection Algorithm
– Klosowski and Silva 1999 and 2000

When does A occludes B ? 
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Idea: Track Visibility Changes

Possible because visibility changes 
little from frame to frame

Events to care about...
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Coorg and Teller, SoCG 96

(1) use a sphere 

To reduce the number of events to 
be tracked:

(2) and a hierarchy of objects

Hierarchical Tests

O
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Hierarchical Tests

O

Hierarchical Tests

O
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Coorg and Teller, I3D 97

Ign
ore

d

Ignored
A

B

T

Added the capability to
join the effect of connected
occluders, that is, a form 
of occluder fusion

Occluder Fusion
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Fast Tangent Plane Computation

Because this computation is fast,
it is no longer necessary to keep
fine-grain visibility events

Use Temporal Coherence to Cache 
Relevant Events
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Detail Occluders

Metric for Comparing Occluder Quality

Occluder quality:  (-A (N * V)) / ||D||2

A : the occluder’s area
N : normal
V : viewing direction
D : the distance between the viewpoint and the occluder
center
Large polygon have large area-angle.

V
A

N

D
O
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Hudson et al, SoCG 97

C
B

AViewpoint

Occluder

Occluder Quality

• Solid Angle  (similar to Coorg and Teller)

• Depth Complexity
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Talk Summary

• Cells and portals 
– Teller and Sequin, Siggraph 91
– Luebke and Georges, I3D 95

• Visibility culling with large occluders
– Coorg and Teller, SoCG 96 and I3D 97
– Hudson et al, SoCG 97

• Prioritized-Layer Projection Algorithm
– Klosowski and Silva 1999 and 2000

PLP: A Framework for Time-
Critical Rendering

• Rendering within a budget

• Low-complexity preprocessing

• No pre-selection of occluders

• Object-space occluder fusion

• Simple to implement
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Combining Occluders

Occluders

Occludee

A

B

C

PLP Overview

• Occupancy-based spatial tessellation

• Prioritized cell traversal algorithm
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Spatial Tessellation Algorithm
• Insert original vertices into octree
• Leaves of octree define the spatial tessellation
• Insert geometry into mesh cells

Obs: Other types of spatial tessellations (such as Delaunay triangulations) also work fine! 

Priority-Based Traversal Algorithm

while (PQ is not empty)                             
project cell with minimum 
opacity;

if (budget reached) stop;
for each adjacent cell c

if (c not projected)
update opacity value o;
enqueue c;

view direction

A

B

C



23

2D Prototype

2D Prototype
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2D Prototype

2D Prototype

DEMO!
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Finding Visible Triangles

Finding Visible Triangles

Front-to-back 
projection at 10%

PLP at 10%
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Wrong Pixels Over Several Frames

Some Quantitative Results

• With 1% budget PLP  finds over 50% of visible 
set on average

• For the 500K-triangle city model, it takes          
2 minutes of preprocessing                                 
For this model, a 5% budget, PLP finds about 
80% of the visible set 
At most 4% of the pixels in a given image are 
wrong!
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Mistakes
Correct PLP

MissedSpat. Tess.

Filling Up The “Gaps”
A Conservative PLP (cPLP)
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Basic Idea: Find Visible “Front”

Basic Idea: Find Visible “Front”
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Basic Idea: Find Visible “Front”

How to identify the visible Front ?

• HP Occlusion-Culling Test

• A novel Stencil-Buffer Technique
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The HP Occlusion-Cullig Test

0.5

0.5

0.5

0.9

Query Primitive

• Very simple to use

• HP fx6 hardware can
perform about 1000 to 6000
tests per second

OpenGL buffers

Color buffer

Z buffer

Stencil buffer

(R, G, B)

(Z)

(S)

8-bit per coordinate

24-bit per coordinate

4 to 8 bits per coordinate

There are other buffers!
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OpenGL Pixel Pipeline

Stencil test Z test
Write pixel to
color buffer

Fail Fail

Pass

glStencilFunc() 

glStencilOp()

Computing Visibility with OpenGL

Stencil test Z test
Write pixel with
front-cell id to
color buffer

Fail Fail

Pass

Basic (non-optimized) algorithm:
(1) save color buffer
(2) disable changes to the Z-buffer
(3) clear Stencil-buffer
(4) render
(5) each cell on a non-zero stencil buffer is visible
(6) restore color buffer and enable changes to Z-buffer
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The PC and Graphics Hardware

Chipset

AGP

PCI

Memory
Pentium

3

Ethernet

132 MB/s

1 GB/s

Test Dataset -- 3rd Floor of SODA Hall
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Movies

Depth-Complexity 

View-Frustum Front-to-back HP

cPLP
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Get related papers at:

http://www.research.att.com/~csilva
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Efficient
�

Conser vative Visibility Culling Using The Prioritiz ed-Layered
Projection Algorithm

JamesT. Klosowski� CláudioT. Silva†

Abstract

We proposea novel conservative visibility culling techniquebased
on the Prioritized-LayeredProjection(PLP) algorithm. PLP is a
time-critical renderingtechniquethat computes,for a given view-
point, a partially correctimageby renderingonly a subsetof the
geometricprimitives,thosethat PLP determinesto be mostlikely
visible. Our new algorithm builds on PLP and provides an effi-
cientwayof findingtheremainingvisibleprimitives.Wedothisby
addinga secondphaseto PLPwhich usesimage-spacetechniques
for determiningthevisibility statusof theremaininggeometry. An-
othercontribution of our work is to show how to efficiently imple-
mentsuchimage-spacevisibility queriesusingcurrentlyavailable
OpenGLhardware and extensions. We report on the implemen-
tationof our techniqueson several graphicsarchitectures,analyze
theircomplexity, anddiscussapossiblehardwareextensionthathas
thepotentialto furtherincreaseperformance.

Index Terms Conservative visibility, occlusionculling, interac-
tive rendering

1 Intr oduction

Interactive renderingof very largedatasetsis a fundamentalprob-
lem in computergraphics.Althoughgraphicsprocessingpower is
increasingevery day, its performancehasnot beenable to keep
up with the rapid increasein datasetcomplexity. To addressthis
shortcoming,techniquesarebeingdevelopedto reducetheamount
of geometrythat is requiredto be rendered,while still preserving
imageaccuracy.

Occlusionculling is onesuchtechniquewhosegoal is to deter-
mine which geometryis hiddenfrom the viewer by othergeome-
try. Suchoccludedgeometryneednotbeprocessedby thegraphics
hardwaresinceit will not contributeto thefinal imageproducedon
thescreen.Occlusionculling, alsoknown asvisibility culling1, is
especiallyeffective for sceneswith high depthcomplexity, dueto
thelargeamountof occlusionthatoccurs.In suchsituations,much
geometrycanoftenbeeliminatedfrom therenderingprocess.Oc-
clusionculling techniquesareusuallyconservative, producingim-
agesthat are identical to thosethat would result from rendering
all of the geometry. However, they canalsobeapproximatetech-
niquesthatproduceimagesthataremostlycorrect,in exchangefor
even greaterlevels of interactivity. The approximateapproaches
aremoreeffective whenonly a few pixelsarerenderedincorrectly,
limiting any artifactsthatareperceivableto theviewer.

ThePrioritized-LayeredProjection(PLP)algorithm,introduced
by Klosowski andSilva[16,17], is onesuchexampleof anapprox-
imateocclusionculling technique.Ratherthanperforming(expen-
sive) conservative visibility determinations,PLP is an aggressive

�
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1Visibility culling is alsousedin a moregeneralcontext to refer to all

algorithmsthatcull geometrybasedonvisibility, suchasback-faceculling,
view frustumculling, andocclusionculling.

culling algorithmthat estimatesthe visible primitives for a given
viewpoint, andonly rendersthoseprimitivesthat it determinesto
bemostlikely visible,up to auser-specifiedbudget.Consequently,
PLPis suitablefor generatingpartially correctimagesfor usein a
time-criticalrenderingsystem.To illustratethisapproach,consider
the imagesof the office modelshown in Fig. 1. The imagegen-
eratedby PLP for this viewpoint is shown in Fig. 1(a), while the
correctlyrenderedimageis in Fig. 1(b). We canseethattheimage
renderedby PLPis fairly accurate,althoughportionsof themodel
aremissing,includingtheplantstand,clock,doorjam,andpartsof
thedesklamp.

(a) (b)

(c) (d)

Figure1: Office model: (a) This imagewascomputedusingPLP
andis missingseveral triangles.(b) Thecorrectimageshowing all
the visible trianglesrenderedwith cPLP. (c) The currentz-buffer,
renderedasluminance,for theimagein (a). Black/whiterepresents
near/far objects.(d) Final z-buffer for thecorrectimagein (b).

PLPworksby initially creatingapartitionof thespaceoccupied
by the geometricprimitives. Eachcell in the partition is thenas-
signed,during the renderingloop, a probabilisticvalueindicating
how likely it is that thecell is visible, giventhecurrentviewpoint,
view direction,andgeometryin theneighboringcells.Theintuitive
ideabehindthealgorithmis thatacell containingmuchgeometryis



likely to occludethecellsbehindit. At eachpointof thealgorithm,
PLPmaintainsa priority queue,alsocalledthe front, which deter-
mineswhichcell is mostlikely to bevisibleandthereforeprojected
next by the algorithm. As cells areprojected,the geometryasso-
ciatedwith thosecells is rendered,until the algorithmrunsout of
time or reachesits limit of renderedprimitives. At thesametime,
theneighboringcellsof therenderedcell areinsertedinto thefront
with appropriateprobabilisticvalues. It is by schedulingthe pro-
jectionof cellsasthey areinsertedin the front thatPLP is ableto
performeffective visibility estimation.

In [16, 17], PLP was shown to be effective at finding visible
primitives for reasonablysmall budgets. For example,for a city
modelcontaining500K triangles,PLP wasable to find (on aver-
age)90% of thevisible triangleswhile renderingonly 10%of the
total geometry. This numberalonedoesnot guaranteethe quality
of theresultingimages,sincethemissing10%of thevisible trian-
glescouldoccupy a very largepercentageof thescreenor maybe
centrallylocatedsothattheincorrectpixelsarevery evidentto the
viewer. To addressthisconcern,theauthorsreportedthenumberof
incorrectpixelsgeneratedby thePLPalgorithm.In theworstcase,
for thesamemodelandviewpointsdiscussedabove,PLPonly gen-
erated4%of thepixelsincorrectly. Thesetwo statisticssupportthe
claim thatPLPis effective in finding visiblegeometry.

As mentionedpreviously, approximateocclusionculling tech-
niqueswill sacrificeimage accuracy for greaterrenderinginter-
activity. While this tradeoff may be acceptablein someapplica-
tions (especiallythosethat demandtime-critical rendering),there
are many others(suchas manufacturing, medical, and scientific
visualizationapplications)that cannottoleratesuchartifacts. The
usersof theseapplicationsrequirethatall of the imagesgenerated
to becompletelyaccurate.To addresstherequirementsof theseap-
plications,we describean efficient conservative occlusionculling
algorithmbaseduponPLP. Essentially, our new algorithm works
by filling in theholesin theimagewherePLPmadethemistake of
not renderingthecompletesetof visiblegeometry.

An interestingfactis thatafterrenderingPLP’sestimationof the
visible set,asshown in Fig. 1(a),mostof thez-buffer getsinitial-
ized to somenon-default value, as illustratedby Fig. 1(c). This
figure correspondsto the z-buffer renderedas luminance,where
black representsnearobjects,andwhite representsfar objects. If
wewereto renderthecellsin thefront (seeFig. 3), thevisiblecells
would protrudethroughtherenderedgeometry. Thetechniqueswe
presentin this paperarebasedon incrementallycomputingwhich
cellsin PLP’sfront areoccluded(thatis, cannotbe“seen”through
thecurrentz-buffer), andeliminatingthemfrom thefront until the
front is empty. Whenthis conditionholds,we know we have the
correctimage(1(b))andz-buffer (1(d)).

Theuseof (two-dimensional)depthinformationto avoid render-
ing occludedgeometryis notanew idea.TheHierarchicalZ-Buffer
techniqueof Greeneet al. [14] is probablythe bestknown exam-
ple of a techniquethat effectively usessuchinformation. How-
ever, even beforethis seminalpaper, KubotaPacific alreadyhad
hardwaresupporton their graphicssubsystemfor visibility queries
basedon the currentstatusof the depthbuffer. In Section5, we
will putournew techniquesinto context with respectto therelevant
relatedwork.

Themaincontributionsof our work are:

� WeproposecPLP, anefficient interactive renderingalgorithm
thatworksasanextensionto thePLPalgorithmby addinga
secondphasewhichusesimage-spacevisibility queries.

� We show how to efficiently implementsuchimage-spacevis-
ibility queriesusingavailableOpenGLhardwareandexten-
sions.Our implementationtechniquescanpotentiallybeused
in conjunctionwith otheralgorithms.

� We discusstheperformanceandlimitationsof currentgraph-
ics hardware, and we proposea simple hardware extension
thatcouldprovide furtherperformanceimprovements.

The remainderof our paperhasbeenorganizedas follows. In
Section2, after a brief overview of PLP and someaspectsof its
implementation,we detail our new cPLP algorithm. We present
several techniquesfor the implementationof our image-spacevis-
ibility queriesusingavailableOpenGLhardwareandextensionsin
Section3. We also proposea simple hardware extensionto fur-
ther improve renderingperformance. In Section4 we report on
theoverall performanceof thevarioustechniquesonseveralgraph-
ics architectures.In Section5, we provide a brief overview of the
previous work on occlusionculling, followed by a morethorough
comparisonof our currentalgorithmwith the most relevant prior
techniques.Finally, we endthepresentationwith someconcluding
remarks.

2 The Conser vative PLP Algorithm

The conservative PLP algorithm (cPLP) is an extensionto PLP
which efficiently usesimage-spacevisibility queriesto develop a
conservative occlusionculling algorithm on top of PLP’s time-
critical framework. In this section,we briefly review the original
PLP algorithmandthenpresentour cPLPalgorithm. Our image-
spacevisibility queries,a crucial part of the implementationof
cPLP, arediscussedin Section3.

2.1 Overview of PLP

Prioritized-LayeredProjectionis a techniquefor fastrenderingof
high depthcomplexity scenes.It works by estimatingthe visible
primitivesin a scenefrom a givenviewpoint incrementally. At the
heartof thePLPalgorithmis aspace-traversalalgorithm,whichpri-
oritizestheprojectionof thegeometricprimitivesin sucha way as
to delayrenderingprimitivesthathave a small likelihoodof being
visible. Insteadof explicitly overestimatingthevisiblesetof primi-
tives,asis donein conservative techniques,thealgorithmworkson
a budget.For eachviewpoint, theviewer canprovide a maximum
numberof primitivesto berenderedandthealgorithmwill deliver
what it considersto be the setof primitiveswhich maximizesthe
imagequality, basedupona visibility estimationmetric. PLPcon-
sistsof an efficient preprocessingstepfollowed by a time-critical
renderingalgorithmasthedatais beingvisualized.

PLPpartitionsthespacethatcontainstheoriginal input geome-
try into convex cells. During this one-timepreprocessing,thecol-
lection of cells is generatedin sucha way as to roughly keepa
uniformdensityof primitivespercell. This samplingleadsto large
cellsin unpopulatedareasandsmallcellsin denselyoccupiedareas.
Originally, thespatialpartitioningusedwasa DelaunayTriangula-
tion [16]; however, an octreehasrecentlybeenshown in [17] to
be a moreeffective datastructure,both in termsof efficiency and
easeof use.Sinceanoctreeis actuallya hierarchyof spatialnodes
asopposedto a disjoint partition,we only utilize thesetof all leaf
nodesof theoctree,sincethesedoprovide sucha partition.

Using the numberof geometricprimitivescontainedin a given
cell, a solidity valueρ is defined,which representstheintrinsic oc-
clusionthat this cell will generate.During the spacetraversalal-
gorithm, solidity valuesareaccumulatedby cells basedupon the
currentviewing parameters(viewpointandview direction),aswell
asthenormalof thefacesharedby neighboringcells. Usingthese
accumulatedvalues,the traversalalgorithmprioritizeswhich cells
aremostlikely to bevisible andthereforeshouldbeprojected.For
acompletetreatmentof thesecalculations,pleasereferto [16, 17].

Startingfrom theinitial cell which containstheviewpoint, PLP
attemptsto carve cells out of the tessellation. It doesthis by al-



waysprojectingthe cell in the front � (the front is the collection
of cells� that are immediatecandidatesfor projection)that is least
likely to beoccludedaccordingto its solidity value. For eachnew
viewpoint, the front is initially empty, andwe insert the cell con-
taining(or closestto) theviewpoint. This cell is thenimmediately
projected(sinceit is theonly candidatecurrentlyin the front) and
as its neighboringcells are insertedinto the front, their accumu-
lated solidity valuesareestimatedto reflect their position during
the traversal.At thenext iteration,thecell in the front mostlikely
to bevisible is projected,andits neighboringcellsareinsertedinto
thefront with appropriatesolidity values.If a cell hasalreadybeen
insertedinto the front, its solidity valuesareupdatedaccordingly.
Every time a cell in the front is projected,all of the geometryas-
signedto it is (scheduledto be)rendered.

2.2 The cPLP Algorithm

As previouslymentioned,thecPLPalgorithmis built ontopof PLP.
Thebasicideais to first run PLPto renderan initial, approximate
image.As a sideeffect of renderingthis image,two furtherstruc-
tureswill be generatedthat we canexploit in cPLP: � i � the depth
buffer correspondingto theapproximateimage,and � ii � PLP’spri-
ority queue(front), which correspondsto the cells of the spatial
partitionthatwouldberenderednext by PLPif it hadmoretime. In
cPLP, we will iteratively usethedepthbuffer to effectively cull the
cellsin thefront until all of thevisiblegeometryhasbeenrendered.
Thegeneralideacanbesummarizedasfollows:

(1) RunPLPusinga smallbudgetof geometricprimitives.

Thisstepgeneratesa partiallycorrectimagewith “holes” (re-
gionsof incorrectpixels),thecorrespondingdepthbuffer, and
the priority queue(front) containingthe cells that would be
projectednext.

(2) While thefront is notempty, performthefollowing steps:

(2a) Given the currentfront, determinewhich cells areoc-
cluded, using image-spacevisibility queries,and re-
move themfrom thefront.

(2b) ContinuerunningPLP, so that eachcell in the current
front getsprojected,sinceweknow thatthey areall vis-
ible.
Duringthisphase,new cellsthatneighbortheprojected
cellsareinsertedinto thefront asbefore,althoughthey
not candidatesfor projectionduring this iteration. We
terminatethis iterationafter eachof the original cells
(i.e. thosein the front after step(2a)) have beenpro-
jected.

As cells are renderedin step(2b), the holes(and the depth
buffer) getfilled in, until theimageis complete.A nicefeature
of cPLPis thatwe know we aredoneexactly whenthe front
is empty.

One advantageof the formulationgiven above is that cPLP is
ableto performseveral visibility queriesduringeachiteration. At
thesametime,themaincomplicationin implementingcPLPcomes
from thevisibility queriesin step(2a). This is furtherdiscussedin
Section3.

2.3 Challeng es

Thereareprimarily threeobstaclesthatcPLPmustovercometo be
a conservative, interactive renderingalgorithm.It muststartwith a
goodestimationof the correctimage,determinewhich regionsof

Figure2: Illustration of the accuracy of PLP: For the sameview-
point andmodelasshown in Fig. 1, thevisible geometrythatPLP
renderedis shown in white, andthevisible geometrythatPLPdid
not renderis shown in red.

theestimationareincorrect,andfind theremainingvisible geome-
try. Of course,to betruly interactive,eachof thesolutionsto these
challengesmustbe performedvery efficiently. This can be done
thanksto the way PLP was designed. We discusseachof these
issuesbelow.

Estimating the image As demonstratedin [16, 17], PLP is
very effective in finding thevisible polygonsandcorrectlyrender-
ing the vast majority of pixels, even whenusing relatively small
budgets.To illustratethispoint,Figs.1(a)and1(b)show imagesof
anoffice modelfor thePLPandcPLPalgorithms.PLPwasfairly
successfulin finding most of the visible geometryfor this view-
point. To bettervisualizetheaccuracy of PLP, Fig. 2 highlightsthe
visiblegeometrythatPLPrenderedin white,andthevisiblegeom-
etry thatPLPdid not renderin red.By takingfull advantageof the
accuracy of PLP, our conservative algorithmcanquickly obtaina
goodestimationof thecorrectimage.

This featurecanalsobe usedto potentiallyspeed-upotheroc-
clusionculling techniques(suchasthosein [25, 33]), whichrely on
usingthez-buffer valuesto cull geometry.

Finding the holes As PLP projectscells (andrendersthe ge-
ometry insidethesecells), it maintainsthe collectionof cells that
areimmediatecandidatesfor projectionin a priority queue,called
thefront. Clearly, astheprimitivesin thescenearerendered,parts
of the front get occludedby the renderedgeometry. In Fig. 3, we
illustratethis exacteffect. If no “green” (thecolor thatwe usedfor
thefront) werepresent,theimagewould becorrect.In general,the
imagewill becompleted,andrenderingcanbestopped,afterall of
thecellsin thefront areoccludedby therenderedprimitives.Thus,
to find theholesin theestimatedimage,we needonly considerthe
cellsin thefront.

Filling the holes The final piecethat we needto build cPLP
is how to completethe renderingoncewe know whatpartsof the
front arestill visible. For this,it is easierto first considerthecurrent
occludedpartof thefront. Basically, we canthink of theoccluded
front asa singleoccluder(seeFig. 4) that hasa few holes(corre-
spondingto thegreenpatchesin Fig. 3). Thinking analogouslyto
thework of Luebke andGeorges[19], theholescanbethoughtof
as“portals”, or reducedviewing frusta,throughwhichall of there-
mainingvisiblegeometrycanbeseen.An equivalentformulationis



Figure3: Thecurrentfront is highlightedin green.By determining
wherethefront is still visible,it is possibleto localizetheremaining
work to bedoneby our renderingalgorithm.

Eye

Front

Visible

Visible

Occluded

Figure4: Thisfigureillustratesthetechniqueusedin findingthere-
mainingvisiblecellsin cPLP. Thesecellsarefoundby limiting the
remainingwork doneby thealgorithmto only thevisible regions.

to incrementallydeterminewhatcellsbelongto thesesmallerview
frustaby usinganefficient visibility query(discussedbelow).

3 Implementing Visibility Queries

As previously discussed,to extendPLP into a conservative algo-
rithm, we needto efficiently determinewhich cells in thefront are
visible. The visibility querieswill take placein image-spaceand
will utilize the currentdepthbuffer. In this section,we first de-
scribethreetechniquesfor implementingthesequeriesusingavail-
able OpenGL hardware and extensions. Theseinclude using a
hardwarefeatureavailableon somegraphicsarchitectures(suchas
someHewlett-Packard(HP) andSilicon Graphics(SGI) graphics
adapters),anitem-buffer techniquethatrequiresonly thecapability
of readingback the color buffer, andan alternative approachthat
usesanextensionof OpenGL1.2. Then,we discusssomefurther
optimizationtechniques.Finally, we endthis sectionby proposing
a new hardwareextensionthathasthepotentialto speedup visibil-

ity queriesevenfurther.

3.1 Counting Fragments After Depth Test

Onetechniquefor performingthe visibility queriesof cPLPis to
usethe HP occlusionculling extension,which is implementedin
their fx seriesof graphicsaccelerators.This proprietaryfeature,
whichactuallyseemsquitesimilar to thecapabilitiesof theKubota
Pacific Titan 3000reportedby Greeneet al. [14], makes it possi-
ble to determinethe visibility of objectsascomparedto the cur-
rent valuesin the z-buffer. The idea is to adda feedbackloop in
the hardware which is able to checkif changeswould have been
madeto the z-buffer when scan-converting geometricprimitives.
Theactualhardwarefeatureasimplementedon thefx seriesgraph-
ics acceleratorsis explainedin further detail in [25, 26]. Though
not well-known, several othervendorsprovide thesamefunction-
ality. Basically, by simply addinginstrumentationcapabilitiesto
the hardware which are able to count the fragmentswhich pass
the depthtest,any architecturecanbe efficiently augmentedwith
suchocclusionculling capabilities. This is the casefor the SGI
Visual Workstationserieswhich have definedan extensioncalled
GL SGIX depth pass instrument [27, pages72–75]. Sev-
eralnew graphicsboards,suchastheSGI InfiniteReality3 andthe
DiamondFireGL have suchfunctionality. Evenlow-costPCcards
suchas the 3Dfx Voodoographicsboardshave hadsimilar func-
tionality in their Glide library (basicallyby supportingqueriesinto
thehardwareregisters).Sincethefunctionalityproposedby thedif-
ferentvendorsis similar, in therestof thispaper, weconcentrateon
theHP implementationof suchocclusionculling tests.

Onepossibleuseof this hardwarefeatureis to avoid rendering
a very complex objectby first checkingif it is potentiallyvisible.
Thiscanbedoneby checkingwhethera boundingvolumebv, usu-
ally theboundingboxof theobject,is visibleandonly renderingthe
actualobjectif bv is visible. This canbedoneusingthefollowing
fragmentof C++ code:

glEnable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_FALSE);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
DrawBoundingBoxOfObject();
bool isVisible;
glGetBooleanv(GL_OCCLUSION_RESULT_HP, &isVisible);
glDisable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
if (isVisible)

DrawGeometryofObject();

Thiscapabilityis exactlywhatis requiredby ourcPLPvisibility
queries.Giventhecurrentz-buffer, weneedto determinewhatcells
in thefront arevisible. It is asimpletaskto usetheHPhardwareto
querythevisibility statusof eachcell.

The HP occlusionculling featureis implementedin several of
their graphicsaccelerators,for example,the fx6 boards.Although
performingour visibility queriesusing the HP hardware is very
easy, the HP occlusionculling test is not cheap. In an HP white
paper[26], it is estimatedthatperforminganocclusionquerywith
a boundingbox of an object on the fx6 is equivalent to render-
ing about190 25-pixel triangles. Our own experimentson an HP
Kayak with an fx6 estimatesthe costof eachquerybeinghigher.
Dependinguponthesizeof theboundingbox, it couldrequireany-
wherebetween0.1 milliseconds(ms) to 1 ms. This indicatesthat
a naive approachto visibility culling, whereobjectsareconstantly
checked for beingoccluded,might actuallyhurt performance,and
notachievethefull potentialof thegraphicsboard.In fact,it is pos-
sible to slow down the fx6 considerablyif oneis unlucky enough
to projectthe polygonsin a back-to-frontorder, sincenoneof the
boundingboxeswould beoccluded.In their mostrecentofferings,



HPhasimprovedtheirocclusionculling features.Thefx5 andfx10
accelerators� canperformseveral occlusionculling queriesin par-
allel [9]. Also, HP reportsthat their OpenGLimplementationhas
beenchangedto usethe occlusionculling featuresautomatically
whenever feasible.For example,prior to renderinga largedisplay
list, their softwarewould actuallyperforman occlusionquerybe-
fore renderingall of thegeometry.

Utilizing the HP occlusionculling featurehasproven to be the
simplestand most efficient of our three techniquesfor perform-
ing the visibility queriesneededby cPLP. Unfortunately, at this
time,thishardwarefeatureis notwidely availablein othergraphics
boards(for instance,neitherof market leadersNvidia or ATI sup-
port this feature).Becauseof this,we next describea simpleitem-
buffer technique,whoseonly requirementis thecapabilityto read
backthecolorbuffer. In Section3.6,weproposeasimpleextension
of theOpenGLfunctionalitywhich extendsthefragment-counting
idea,by addingcomponentsof thetechniquesdescribednext.

3.2 An Item Buff er Technique

It is possibleto implementvisibility queriessimilar to theonespro-
videdby theHP occlusionteston genericOpenGLhardware. The
basicideais to usethecolorbuffer to determinethevisibility of ge-
ometricprimitives. For example,if onewould like to determineif
agivenprimitive is visible,onecouldclearthecolorbuffer, disable
changesto the z-buffer (but not theactualz test),andthenrender
the (boundingbox of the) primitive with a well-known color. If
that color appearsduringa scanof thecolor buffer, we know that
someportion of the primitive passedthe z test,which meansthe
(boundingbox of the)primitive is actuallyvisible.

Therearetwo main costsassociatedwith the item-buffer tech-
nique:transferringthecolorbuffer from thegraphicsadapterto the
hostcomputer’smainmemoryandthetimeit takestheCPUto scan
thecolor buffer. Thetransfercostcanbesubstantialin comparison
to thescanningcost(seeTable2). Consequently, it is muchmore
efficient to do many visibility queriesat once.By coloringeachof
thecellsin thefront with a differentcolor, it is possibleto perform
many queriesat thesametime.

An unwantedsideeffect of checkingmultiple cellsis thata cell,
C, in the front may be occludedby othercells in the front, asop-
posedto thecurrentz-buffer which containsdepthinformationfor
the previously rendered geometry. This is a problembecauseal-
thoughcell C is occludedby theothercells in thefront, thegeom-
etry containedwithin cell C maynot beoccludedby thegeometry
within theothercells. A multi-passalgorithmis thereforerequired
to guaranteethatacell is properlymarkedasoccluded.Initially, all
cells in the front aremarkedas“potentially visible”. We alsodis-
ablewriting to thez-buffer, sothatit remainsaccuratewith respect
to the geometrypreviously renderedby PLP. To retain the color
buffer informationfor thisgeometry, wesave theinitial imagegen-
eratedby PLPduringstep(1) (seeSections2.2and3.5). Eachpass
of thealgorithmthenclearsthecolorbuffer andrendersthebound-
ary of eachof thecells in thefront that is potentiallyvisible using
a distinct color. We thentransferandscanthe color buffer to de-
terminewhichcellsareactuallyvisibleandmarkthem.Iteratingin
this fashion,we candetermineexactly which cellsarevisible with
respectto the previously renderedgeometry. The remainingcells
aredeterminedto beoccludedby thepreviously renderedgeometry
andneednotbeconsideredfurther. Themulti-passalgorithmtermi-
natesoncethecolor buffer scanindicatesthatnoneof therendered
cells, for the currentpass,weredeterminedto be visible. That is,
thecolor buffer is completelyemptyof all colors.Notethatpoten-
tially visiblecellswill needto berenderedmultiple times,however,
oncea cell is found to be visible in onepass,it is marked appro-
priately andnot renderedagain. Pseudo-codefor the item-buffer
techniqueis includedbelow.

glDepthMask(GL_FALSE);
for each cell c in front {

markCellPotentiallyVisible(c);
}
bool done = false;
while (!done) {

glClear(GL_COLOR_BUFFER_BIT);
for each cell c in front {

if (potentiallyVisible(c))
renderCell(c);

}
glReadPixels(0, 0, width, height,

GL_RGBA, GL_UNSIGNED_BYTE, visible_colors);
int cnt = 0;
for each cell c that appears in visible_colors {

markCellVisible(c);
cnt++;

}
if (cnt == 0)

done = true;
}

3.3 The OpenGL Histogram Extension

The item-buffer techniquejust proposedperformsa lot of data
movementbetweenthegraphicsaccelerator’smemoryandthehost
computer’s mainmemory. Onmostarchitectures,this is still avery
expensive operation,sincethedatamustflow throughsomeshared
buswith all of theothercomponentsin thecomputer. Weproposea
differenttechniquewhichusesintrinsic OpenGLoperationsto per-
form all the computationson the graphicsaccelerators,andonly
move a verysmallamountof databackto thehostCPU.

Our new techniquesharessomesimilarity to theprevious item-
buffer technique.For instance,it alsoneedsto renderthepotentially
visiblecellsmultiple times,until novisiblecell is found.However,
the new methodusesOpenGL’s histogrammingfacility, available
in theARB imagingextensionof OpenGL1.2,to actuallycompute
the visible cells (see[1]). After renderingthe potentially visible
cells in this case,ratherthan transferringthe color buffer to the
host’s CPUandscanningit for thevisible cells,we simply enable
the histogrammingfacility and transferthe color buffer into tex-
turememory(still on thegraphicsaccelerator).During this trans-
fer, OpenGLwill computethe numberof timesa particularcolor
appears.A short array with the accumulatedvaluescan then be
fetchedby thehostCPUwith a singlecall. A fragmentof our C++
codeillustratesthisapproach.

glEnable(GL_TEXTURE_2D);
glEnable(GL_HISTOGRAM_EXT);
glHistogramEXT(GL_HISTOGRAM_EXT, 256,

GL_LUMINANCE, GL_TRUE );
glCopyTexSubImage2D(GL_TEXTURE_2D, 0,

0, 0, WIDTH, HEIGHT, WIDTH, HEIGHT);
GLuint histogram_values[256];
glGetHistogramEXT(GL_HISTOGRAM_EXT, GL_FALSE,

GL_LUMINANCE, GL_UNSIGNED_INT,
histogram_values);

glResetHistogramEXT ( GL_HISTOGRAM_EXT );
glDisable(GL_TEXTURE_2D);
glDisable(GL_HISTOGRAM_EXT);

After this codeis executed,thearrayhistogramvaluescontains
thenumberof timeseachcolor (hereuniquelyidentifiedby an in-
tegerbetween0 to 255)appeared.With this technique,thegraph-
ics boarddoesall the work, and only transfersthe resultsto the
host CPU. The sameterminationcriterion exists for this multi-
passalgorithmas for the item-buffer technique,althoughwe can
moreeasilytestfor this conditionin this case.For instance,if his-
togramvalues[0]is equalto WIDTH 	 HEIGHT, meaningall pix-
els arethe same(background)color, thenno cells arevisible and
weterminatethealgorithm.



3.4 Impr oving Visibility Query Performance

It is possibleto improve the performanceof our visibility query
techniquesby implementingseveral optimizations. The previous
two techniquesneedto performoperationsthattouchall thepixels
in the image,possiblymultiple times. To avoid computationsin
areasof thescreenthathave alreadybeencompletelycovered,we
have implementeda simpletiling schemethat greatlyreducesthe
amountof transfersandscansrequired.Thebasicideais to simply
divide the screeninto fixed tiles. For a 512x512pixel image,we
could break the screenup into 64 tiles, eachcontaininga block
of 64x64pixels. During themulti-passalgorithm,we needto keep
trackof theactivetiles,thosethatin thepreviousiterationcontained
visibleprimitives.After eachiteration,tilesgetcompleted,andthe
numberof tileswhichneedto berenderedto andscanneddecreases.

Anothersimpleoptimizationfor the item-buffer techniquewas
to minimize the numberof color channelsto transferto the host
computer’s mainmemory. For example,if we have r bits to repre-
sentthe red color componenton our machine,andwe have fewer
than2r cellsto checkin thefront, wecanuniquelycolor thesecells
usingonly theredcolor component.Consequently, we would only
needto transferandscanthe GL RED componentfor eachpixel
in the image,as opposedto transferringand scanningthe entire
GL RGBA component.

We have implementedand are currently using thesetwo op-
timizations. A non-conservative optimizationfor our techniques
would beto computevisibility in a lower resolutionthantheactual
renderingwindow [33]. Although a quite effective optimization,
this might leadto undesirableartifacts. This is oneof the reasons
we donotuseit in oursystem.

3.5 Integration with cPLP

Thetechniquespresentedsofar essentiallysolvestep(2a)of cPLP.
Both the item-buffer techniqueaswell asthehistogrammingtech-
niqueneedto have accessto the color buffer of the machinebe-
ing usedfor its computations.For eachpass,they requirethat the
colorbuffer becleared,whichconflictswith theimagecomputation
which is performedin steps(1) and(2b). Naively, it would benec-
essaryto save thecompletecolor buffer (or at leasttheactive tiles)
beforeeachcall to step(2a) and restoreit beforethe call to step
(2b).

Instead,sincewe expect that after step(1) mostof the visible
triangleshave beenrendered,we simply save the imagestep(1)
generated,andignorethechangesto thecolor buffer from thenon
(were-renderedtheextrageometryin theendto recover thecorrect
image).Theimportantthing is to correctlyaccountfor thez-buffer
changesthataretriggeredby the renderingof thegeometryinside
thecells.To dothis,beforestep(2b),wechangethemasksonthez-
buffer sothatit getsupdatedasgeometryis renderedin (2b). When
thefront becomesempty, we know thez-buffer wascompleted.At
that point, we performa single imagerestore(with the imagewe
savedin step(1)), andwere-renderall thegeometrythatwasfound
to bevisiblesincethatpoint.

Fig.10providesanoverview of ourcPLPalgorithmasdescribed.
For a sampleview of anoffice model,snapshotsweretakenat sev-
eral iterations(step2) of our algorithm. Figs. 10(a)-(c)illustrate
the currentcolor buffer and front (in blue) at eachiteration. The
remainingvisiblegeometrywill comefrom within thevisible front
cells. (d)-(f) illustrate the tiles of the screenthat have beencom-
pletedandthereforedo not needto be scannedduringsubsequent
iterations.(c) and(f) correspondto thefinal (correct)image,since
all of the tiles have beencompletelycovered.Notethat in (b), the
front cells,whicharebarelyvisible,arein theupperleft cornerand
nearthe two desksin the middle of the screen.As expected,the
tiles thatrepresenttheseareasarenotmarkedascompleted.

3.6 Extending the OpenGL Histogram

Herewe proposea modificationto OpenGLthathasthepotential
to greatly improve performance. In particular, it would make it
possibleto avoid thecostlymulti-passvisibility computationsthat
wearecurrentlyforcedto use,andit canbeseenasageneralization
of theHPocclusionculling test.

OpenGL backgr ound Beforewegointo details,it helpsto un-
derstanda bit moreon how OpenGLworks. Thegraphicspipeline
is thetermusedfor thepathaparticularprimitivetakesin thegraph-
ics hardwarefrom the time theuserdefinesit in 3D to the time it
actuallycontributesto thecolor of a particularpixel on thescreen.
At a very high level, a primitive mustundergo several operations
beforeit is drawn on the screen.A flowchartof the operationsis
shown in Fig. 5.

The user has several options for specifying vertices that are
groupedinto primitives, e.g., trianglesor quads. Primitives go
throughseveral stages(not shown), andeventually, get to the ras-
terizationphase.It is at rasterizationthatthecolorsandotherprop-
ertiesof eachpixel arecomputed.During rasterization,primitives
get broken into what we usuallyrefer to as“fragments”. Modern
graphicsarchitectureshaveseveralper-fragmentoperationsthatcan
beperformedoneachfragmentasthey aregenerated.As fragments
arecomputed,they arefurther processed,andthehardwareincre-
mentallyfills theframebuffer with animage.

Per-Fragment Histogramming TheOpenGLhistogramming
facility, partof thepixel transferoperationsshown in Fig. 5, oper-
ateson images,which canpotentiallycomefrom the framebuffer.
TheOpenGLhistogramworks by countingthenumberof timesa
colorappearsin agivenimage.

The reasonwe needto perform multiple passesto determine
when cells are visible at this time is that we are using the color
buffer to find which of the primitivespassedthe z-test. With the
standardpipeline,we only getthe“top layer” of visiblecells,since
oneof theper-fragmentoperationsthatoccursbeforeapixel is writ-
tento thecolorbuffer is thedepth-test.If aper-fragmenthistogram-
mingfacility is addedto thepipelineandit couldbeusedto perform
the sameexact operationon fragments(which passthe z-test),it
would be possibleto counthow many fragmentsof a given prim-
itive passedthez-test. If this numberis zero,theprimitive would
beoccluded,otherwise,thehistogramvaluewould not only tell us
that it is visible, but actuallyprovide anupperboundon thenum-
ber of its pixels that arevisible. With the proposedchangein the
OpenGLpipeline,wewouldstill beableto performseveralqueries
at thesametime,but wewouldnotberequiredto performmultiple
passesover theframebuffer.

Theper-fragmenthistogrammingfunctionalityweareproposing
is a cleanway to extendthe (alreadyuseful) techniquesbasedon
countingthe numberof fragmentswhich passthe z-test(suchas
theHP occlusionculling test),so that it is ableto handlemultiple
andmoregeneraltestswith betterperformance.We would like to
point out that the hardwarecost (in componentcostor chip area)
would likely benon-trivial, sincehigh-performancegraphicshard-
wareis highly parallel(for instance,Nvidia’sGeForcecancompute
four fragmentssimultaneously),andtheextrahardwarefor theper-
fragmenthistogrammingwouldhave to bereplicatedfor eachfrag-
mentgenerator. Of course,this is alreadythecasefor severalother
extensions,includingtheexisting fragmentcountinghardware.We
believe the actualcost (in time) of our augmentedtest would be
similar to the costof a singleHP test,while we would be ableto
performseveraltestsconcurrently.
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Figure5: OpenGLimagingpipeline

Machine CPU(s) Graphics RAM

SGIOctane 1 X R12000,300MHz MXE 512MB
SGIOnyx 12 X R10000,195MHz Infinite Reality 2GB
HP Kayak 2 X PentiumII, 450MHz fx6 384MB

Table 1: The configurationsof the machinesusedin our experi-
ments. The numberof processorsP per machineis listed in the
CPU(s)column,in theform: P X cpu-type,cpu-speed.

4 Experimental Results

Weperformedaseriesof experimentsto determinetheeffectiveness
of our new cPLPalgorithm.We reportresultsfor eachof thethree
implementationsof ourvisibility queriespresentedin Section3, as
well asseveralalternativesfor benchmarking:

cPLP-HP: cPLP, usingtheHPocclusionculling extension,

cPLP-IB: cPLP, usingtheitem-buffer technique,

cPLP-HG: cPLP, usingtheOpenGLhistogramextension,

cPLP-EXT: cPLP, usingourhardwareextensionproposedin Sec-
tion 3.6,

PLP: theoriginalPLP,

VF-BF: view frustumandback-faceculling only,

HP: usingtheHP hardwareto performthevisibility querieswith-
out thebenefitof runningPLPto preloadthecolor anddepth
buffers.

Test model The primary model that we report resultson is
shown in Fig. 9(a)andconsistsof threecopies,placedsideby side,
of thethird floor of theBerkeley SODA Hall. Arrangingthecopies
in sucha way helpsus betterunderstandhow the differentocclu-
sion culling techniquesfunction in a high depthcomplexity envi-
ronment,sincethey have their greatestopportunitywherethereis
significantocclusion. Eachroom in the modelhasvariouspieces
of furnitureandin total, thethreereplicascontainover onemillion
triangles.

We generateda 500-framepaththattravelsright-to-left, starting
from theupperright cornerof Fig. 9(a). In Fig. 9(b)–(e),weshow a
few representative framesof thepath.Thenumberof visible poly-
gonsin eachframe variesconsiderably, especiallywhen moving
from roomto room.

Machine architectures Our experimentswereperformedona
threedifferentarchitectures:anSGI Octane,anSGI Onyx, andan
HPKayak.Theconfigurationsof themachinesarelistedin Table1.
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PLP Triangle Budget (thousands)

Octane cPLP-IB
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Figure6: Averagerenderingtimesper framefor the implementa-
tionsof thecPLPalgorithm.ThePLPbudget,reportedin thousands
of triangles,determinesthenumberof trianglesinitially renderedto
fill-in thedepthbuffer.

Prepr ocessing As discussedin Section2, the preprocessing
stepof cPLP, which is identical to the preprocessingstepof the
original PLP algorithm, is very efficient. The preprocessingin-
cludesreadingthe input geometryfrom a file, building theoctree,
determiningwhichgeometryeachcell contains,andcomputingthe
initial solidity values.Thetotalpreprocessingtimesfor theonemil-
lion trianglemodelmentionedabove was76seconds,128seconds,
and 90 seconds,for the Octane,Onyx, and Kayak, respectively.
While thesetimesareactuallyquitemodest,we have anadditional
opportunityto reducethepreprocessingrequirement.For portabil-
ity purposes,we arecurrentlyusingan ASCII format to storethe
model. For eachof the threemachinesbeing used,at leasthalf
(42, 64, and 56 seconds,respectively) of the preprocessingtime
listed above was spentsimply readingin the model. If we were
to storethemodelin a compactbinaryformat,the input portionof
thepreprocessingwouldlikely bereducedconsiderably. Theoctree
construction,geometryassignment,andinitial solidity computation
only required34, 64, and34 seconds,respectively, on eachof the
threemachines,andcould likely be reducedby carefully optimiz-
ing our code. For the experimentsreportedhere,we subdivided
theoctreeuntil eachleaf containedfewer than5000triangles.This
resultedin 1429octreeleaf cellsbeingcreated.

Rendering results We presentour main renderingresultsfor
thevariouscPLPimplementationsin Fig. 6. Theverticalaxis rep-
resentstheaveragerenderingtime for eachof the500stepsin the
pathgeneratedfor the testmodel. The horizontalaxis represents
the initial budgetusedby PLP to renderwhat it determinedto be
themostlikely visible geometry, therebypreloadingthecolor and
depthbuffers.

If we comparetheitem-buffer andhistogramtechniques,we see
that the item-buffer is considerablyfasteron eachof the SGI ma-



chines. All of theseruns2 tendedto reachtheir minimum values
for an� initial PLPbudgetof 25K triangles,or roughly2.5%of the
total numberin themodel.For this budget,therenderingtimesfor
the item-buffer techniqueon theOctaneandOnyx were0.081and
0.113secondson averageper frame. This is equivalentto render-
ing 12.35and8.85framespersecond,respectively. In comparison,
the histogramapproachtook 0.164and0.178secondson average
per frame,or the equivalentof 6.10and5.62renderedframesper
second.

We did not run cPLP-HGon theKayaksincethe OpenGLhis-
togramextensionis notavailableon thatmachine.Also, thecPLP-
IB techniqueon theKayakwasvery slow, requiring0.864seconds
on averageper frame. We explain why this is the casewhenwe
discussthe costsof the primitive operationsfor eachof the tech-
niquesbelow. The HP hardware occlusionculling extensionwas
clearlynotavailableon theSGIs,andsowecanonly reporton this
techniqueon theKayak.

cPLP-HPwas the most efficient algorithm but we were a lit-
tle surprisedby the fact that it increasedin running time as we
increasedthe PLP budget. We anticipatedthat we would seea
paraboliccurve similar to the runson the two SGI machines.Ini-
tially, we consideredthat runningPLP followed by our cPLP-HP
visibility querieswas not benefittingus at all on the Kayak. To
test this hypothesis,we implementedanothertechnique,HP, that
usedthe hardware occlusionculling extensionwithout the bene-
fit of runningPLP first to preloadthe depthbuffer. Given the set
of leaves in our octree,we first discardedthosenodesthat were
outsidetheview frustum,andthensortedtheremainingnodesac-
cordingto their distancefrom the viewpoint. We thenperformed
visibility queriesfor the nodesin this order. On average,the HP
techniquerequired0.157secondsperframe,which is considerably
slower thanour cPLP-HPalgorithm.

While sortingthenodesaccordingto distanceappearedto be a
goodtechnique,it clearlycannotcaptureany occlusioninformation
asdid cPLP. In addition,this HP techniquedoesnot have a mech-
anismfor determiningwhich nodesarestill visible andwhich sec-
tionsof the screenareyet incomplete.Consequently, this method
cannoteasilydeterminewhenit is finished,andthereforemustper-
form many more visibility queriesthan the cPLP-HPtechnique.
Onecouldthink of modifying this HP approachsothatthequeries
are performedin a hierarchicalfashionsincewe have the octree
constructedanyway. However, while in somecasesthis could re-
ducethe overall renderingtime, in many othersthe timeswill in-
creasedueto the increasein the numberof visibility queries.We
shalldiscussshortlythetimesrequiredfor theHPvisibility queries.
Thus,althoughthebenefitgainedfrom PLPwasnot exactly aswe
anticipated,it still playsa crucial role in achieving interactive ren-
deringtimes.

To quantifyhow well ourconservativeculling algorithmis work-
ing, we implementeda simple renderingalgorithm, VF-BF, that
performedonly view frustumandback-faceculling. Thesetradi-
tional culling approacheswerealsousedwithin cPLP. TheVF-BF
algorithmis considerablyslower thanall of thecPLPimplementa-
tions. For example,on the Octane,VF-BF took 0.975secondsto
rendereachframeon average.Thus,our cPLP-IB andcPLP-HG
methodsrenderframes12 and6 timesfasterthantheVF-BF tech-
nique. Our cPLP-HPmethodprovides even bettercomparisons.
Suchimprovementsin renderingspeeds,which weresimilar on all
of thearchitectures,arecrucial for any applicationrequiringinter-
activity.

Of thetimespentby ourcPLPapproaches,agoodportionof that
time wasactuallyspentrunningthe initial PLPalgorithm. For ex-
ample,on theOctane,out of the0.081secondsit takesto rendera
frameon average,0.064secondswereoccupiedby the initial PLP

2Theonly exceptionbeingtheOctanecPLP-HGmethod,whichreached
aminimumat aPLPbudgetof 50K triangles.

Machine SGIOctane SGIOnyx HP Kayak
ImageSize 642 5122 642 5122 642 5122

Transfer 217 4483 564 7733 375 11250
Scan 30 2300 20 1000 47 3430

Total 247 6783 584 8733 422 14680

Table2: Timesfor theprimitiveoperationsof theitem-buffer tech-
nique.An imagesizeof 642 refersto animagethatis 64x64pixels
in size. Thetransfertime is thedominantcostof this method.All
timesarereportedin microseconds.

algorithm,and0.017secondsusedby theiterativevisibility queries
to completetherenderedimage.For theitem-buffer andhistogram
techniques,the averagenumberof iterative visibility queriesper
framerangedfrom 4.7 iterations,for an initial PLPbudgetof only
1000triangles,to 1.5 iterations,for aninitial budgetof 100000tri-
angles.

Primitive Operation Costs To betterunderstandtherendering
timesreportedin Fig. 6, weanalyzedthecostof performingtheun-
derlyingprimitive operationsfor eachof themethods.By looking
at theseresults,wecanoffer additionalinsightinto why eachof the
methodsworksaswell, or aspoorly, asit does.

For the cPLP-HPtechnique,the visibility queriesinvolve en-
ablingtheHP culling extension,renderinga cell, andreadingback
theflag to indicatewhetherthez-buffer would have changedif we
hadactuallyrenderedthecell. Wetimedthevisibility queriesonthe
HP Kayak andfound that the time rangedbetween100microsec-
onds(µs) and1000µs. In additionto thesecosts,theHP visibility
querycanalsointerrupttherenderingpipeline,therebyreducingthe
overall throughput.Consequently, it is imperativewhenusingthese
queriesto do so with somecaution. It is especiallyadvantageous
whenyou arevery likely to find significantocclusion.Otherwise,
many queriesmaybewastedandtheoverall renderingperformance
will bereduced.

Theprimitiveoperationfor theitem-buffer techniqueis thetrans-
ferring of the color buffer from the graphicsacceleratorsmemory
to themainmemoryof thehostcomputer. This is donein OpenGL
usinga single call to glReadPixels. The other main cost associ-
atedwith this techniqueis the time it takes the CPU to scanthe
color buffer to determinewhich cells have actuallycontributedto
the image. We report thesenumbersfor eachof our machinesin
Table2. It is immediatelyapparentwhy thecPLP-IBtechniqueon
theKayakis soslow. Thetransferandscantimesareconsiderably
slower (for the 512x512image)thanon the SGIs. Another inter-
estingobservation,which alsohelpsjustify our tiling optimization
in Section3.4, is the substantialincreasein time that is required
to transferandscana 512x512pixel image,asopposedto only a
64x64pixel (sub)image.

For thosemachinesthat supportthe OpenGLhistogramexten-
sion, theunderlyingoperationsincludecopying an image,or sub-
imagein thecaseof our tiles, from theframebuffer to texturemem-
ory. We have timed this operationwith the histogramextension
enabledto seehow muchtime is requiredfor thecopy with thehis-
togramcalculations. The histogramcalculationalso includesthe
time to retrieve andscanthe histogramresults. On the Octaneit
takes800µs for a 64x64pixel image,and34000µs for a 512x512
image. On the Onyx, it takes690µs for a 64x64pixel image,and
13500µs for a 512x512image.(We shouldnotethat it is quitedif-
ficult to perform suchmeasurements,but we have doneour best
to report accurateresults.) We were surprisedby the amountof
time requiredto copy the imageto texture memoryand perform
the histogramcomputations.Our initial belief was that by using
the actualhardware to performour visibility queries,our render-



Figure7: Interior view of a skyscrapermodel. cPLPreducedthe
depthcomplexity of this renderedimagefrom 26 to 8.

ing timeswould decrease.Unfortunately, this is not thecaseat this
point in time. While the Onyx appearsto be moreadvancedthan
the(newer) Octanein its histogrammingfeatures,neithermachine
performswell enoughto befasterthantheitem-buffer techniques.

Depth Comple xity To further test our cPLP algorithms,we
consideredanothermodel with extremelyhigh depthcomplexity.
Fig. 7 shows aninterior view of a skyscrapermodelwhich consists
of over onemillion triangles.Themodel,courtesyof NedGreene,
consistsof 54 copiesof a module,eachwith almost20K triangles.

Thepurposeof thisexperimentwasto determinethedepthcom-
plexity of this model when renderingit using the various tech-
niques.By depthcomplexity, we referhereto theaveragenumber
of timesa z-testis performedfor eachpixel in the image. If our
cPLPtechniquesareeffective at determiningocclusion,our meth-
odsshouldreducethe depthcomplexity considerablyin compari-
sonto a standardrenderingalgorithm. Using onesuchtechnique,
VF-BF, wedeterminedthedepthcomplexity of thismodel(for this
viewpoint) to be 26.70on average,for all of the pixels in the im-
age. Using cPLP, we wereableto reducethis valueto only 7.97.
Weemphasizethatthesenumbersreferto thenumberof z-testsper
pixel, asopposedto thenumberof z-teststhatpass(i.e., resulting
in the pixel’s color beingoverwrittenby a fragmentthat is closer
to the viewer), which hasbeenreportedin otherapproaches.We
optedfor this numbersincethenumberof z-testsmoreaccurately
reflectthework thatis doneduringtherenderingalgorithm.

cPLP-EXT Sincewe do not actuallyhave hardwarewhich im-
plementsourproposedextension,hereweextrapolateon its perfor-
mancebasedon theresultswehave,assumingwewereto addsuch
anextensionto theHP Kayakfx6. UsingcPLP-IB,it is possibleto
determinethenumberof teststhatcanbeperformedin parallelfor
eachtrianglebudgetin Fig. 6. Assumingour extensionis properly
implemented,we believe it shouldtake nomoretime thanthefrag-
mentcountingtechniquealreadyavailableonseveralarchitectures.
While measuringonHPmachines,we foundthatin theworstcase,
anocclusiontestcosts1 ms. But sincewe have to bring moredata
from thegraphicshardwarefor our extension,we will assumethat
eachqueryis twice asexpensive, or 2 ms,to accountfor theextra
datatransfer. (Sinceonly extremelysmallarraysof 256valuesare
beingtransfered,we don’t actuallybelieve it would have suchan
impact.)
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PLP Triangle Budget (thousands)

Kayak cPLP-HP
Kayak cPLP-EXT

Figure8: Averagerenderingtimesperframefor cPLP-HPandour
proposedhardwareextensionmethodcPLP-EXT. ThePLPbudget,
reportedin thousandsof triangles,determinesthenumberof trian-
glesinitially renderedto fill-in thedepthbuffer.

Table3 summarizesour findings. Basically, we arecomputing
the time for cPLP-EXTasa sumof the initial PLPcost(initialize
its per-framedatastructures,suchaszeroingthe solidity of each
cell; andrenderingthe first batchof trianglesfor all frames),plus
the total numberof parallel EXT tests(which we assumetake 2
mseach),plusthetime to renderingtheextra triangles(at a rateof
approximately1 million triangles/sec)whicharefoundasvisibility
testsareperformed.

With theseassumptions,wecanseethatour frameratesgetcon-
siderablybetter(seeFig. 8), andwe could potentially achieve a
framerateof 23 Hz (versus18 Hz for cPLP-HP;an improvement
of 28%)if wehadahardwareimplementationof ourextension.We
would like to point out that the advantagewould be even greater
if thecostof initializing PLP’sper-framedatastructureswasmade
lower. Our currentPLPimplementationusesanSTL set,which is
not particularlyoptimizedfor lineartraversalswhich arenecessary
duringinitialization. If necessary, it would bepossibleto optimize
thiscodefurther.

5 Related Work

Therehasbeena substantialamountof recentwork on occlusion
culling (see,for instance,[5, 6, 8, 11, 18,23, 24, 30,31]). Thepur-
poseof thissectionis not to doanextensive review of all occlusion
culling algorithms. For that, we refer the interestedreaderto the
recentsurveysby Cohen-Oretal. [7] andDurand[10]. Instead,we
focuson reviewing work thatis morecloselyrelatedto ourown, so
thatwecanindicatethesimilaritiesanddifferenceswith ourcurrent
work.

Closely related to our work are techniquesthat use two-
dimensionaldepthinformationto avoid renderingoccludedgeom-
etry. An earlyexampleof this is a techniqueby Meagher[20] that
storesthe scenein an octree,and the framebuffer in a quadtree.
Meagherrendersthe octreein a strict front-to-backorder, while
keepingtrack of which partsof thequadtreegetfilled, in orderto
avoid touchingpartsof theoctreethatcannotbeseen.Naylor [22]
proposesanotherversionof this idea,whereinsteadof usinganoc-
treeandaquadtree,heusestwo binary-spacepartitioningtrees[12],
onein 3D, theotherin 2D, to efficiently keepboththesceneandthe
imagerespectively. The3D BSPcanbeusedto traversethescene
in a strict front-to-backorder, andthe2D BSPis usedto keepthe
areasof thescreenwhich getfilled. Our currentapproachesdiffer



PLPBudget(triangles) PLPTime(s) # EXT Tests Avg. ExtraTriangles AverageTime(s) FrameRate(Hz)

1,000 0.019 4.688 16844 0.044 22.7
10,000 0.028 3.376 10978 0.045 22.2
25,000 0.043 2.426 5641 0.053 18.9
50,000 0.066 1.908 2796 0.072 13.9
75,000 0.091 1.630 1770 0.096 10.4
100,000 0.112 1.372 1247 0.116 8.6

Table3: Performanceof cPLP-EXTona“hypothetical”HPKayakfx6. All timesarereportedin seconds.Theaverageextra trianglesarethe
numberof trianglesthatgetrenderedin additionto thePLPbudget.Seetext for furtherdetails.

from thesemethodsin that they do not renderin a strict front-to-
backorder(which wasshown to belesseffective),but ratherallow
PLPto determinetheorderin which to visit (andrender)thecells.

TheHierarchicalZ-Buffer (HZB) techniqueof Greeneetal. [14]
is probablythebestknown exampleof a techniquethatefficiently
usesdepthinformationfor occlusionculling. Their techniqueis re-
latedto Meagher[20] in thatit alsousesanoctreefor managingthe
scene,which is renderedin front-to-backorder. Anothersimilarity
is that they alsousea quadtree,but not for the actualframebuffer
(as in [20]). Instead,they usethe quadtreeto storethe z-buffer
values,which allow for fast rejectionof occludedgeometry. The
HZB techniquealsoexplorestemporalcoherency by initializing the
depthbuffer with thecontentsof thevisible geometryin theprevi-
ousframe.

TheHierarchicalZ-Buffer hasseveralsimilaritiesto cPLP. Their
useof the visible geometryfrom the previous frame for the pur-
poseof estimatingthevisible geometryis similar to our approach,
althoughin our case,we usethevisibility estimationpropertiesof
PLPto estimatethecurrentframe. Oneadvantageof doing it this
way is that (aswe have shown earlier) the front intrinsically tells
us whereto continuerenderingto fill-up the z-buffer. HZB has
nosuchinformation;it renderstheremaininggeometryin front-to-
backorder. Thefactthatweemploy aspatialpartitioninginsteadof
a hierarchyin object-spaceis only a minor difference.Depending
upon the sceneproperties,this may or may not be an advantage.
Theflat datastructurewe useseemsmoreefficient for a hardware
implementation,sincewe do not needto stop the pipelineasof-
ten to determinethe visibility of objects. In [13], Greeneintro-
ducesan optimizedvariation of the HZB technique,including a
non-conservative mode.

A closelyrelatedtechniqueis theHierarchicalOcclusionMaps
of Zhanget al. [33]. For eachframe,objectsfrom a precomputed
databaseare chosento be occluders,and are rendered(possibly)
in lower resolutionto get a coveragefootprint of thepotentialoc-
cluders. Using this image,OpenGL’s texture mappingfunction-
ality generatesa hierarchyof image-spaceocclusionmaps,which
arethenusedto determinethepossibleocclusionof objectsin the
scene.Notethat in this technique,thedepthcomponentis consid-
eredafterit isdeterminedthatanobjectcanpotentiallybeoccluded.
Oneof themaindifferencesbetweenHOM andcPLPis thatHOM
relieson preprocessingthe input to find its occluders,while cPLP
usesPLPfor thatpurpose.HOM alsoutilizesa strict front-to-back
traversalof theobject-spacehierarchy.

The work by Bartz et al. [3, 4] addressesseveral of the same
questionswe do in this paper. They provide anefficient technique
for implementingocclusionculling usingcoreOpenGLfunctional-
ity, andthenproposea hardwareextensionwhich hasthepotential
to improve performance.Similar to the previous methods,Bartz
et al. usea hierarchyfor the 3D scene.In orderto determinethe
visiblenodes,they first performview-frustumculling, which is op-
timizedby usingtheOpenGLselectionmodecapabilities.For the
actualocclusiontests,which areperformedtop-down in the hier-
archynodes,they proposeto usea virtual occlusionbuffer, which

is implementedusingthestencilbuffer to save theresultsof when
a given fragmenthaspassedthe z-test. In their technique,they
needto scanthestencilbuffer to performeachvisibility test.Since
thishasto beperformedseveraltimeswhendeterminingthevisible
nodesof a hierarchy, this is themosttime consumingpartof their
technique,andthey proposeanoptimizationbasedonsamplingthe
virtual occlusionbuffer (thusmakingtheresultsonly approximate).
In their paper, they alsoproposeanextensionof theHP occlusion
culling test [25] (see[3] for details). At this time, the HP occlu-
siontestsimply tells whethera primitive is visible or not. Bartzet
al. proposeanextensionto includemoredetail,suchasnumberof
visiblepixels,closestz-value,minimal-screenspaceboundingbox,
etc.Thereareseveraldifferencesbetweentheir work andour own.
First and foremost,our techniquesaredesignedto exploit multi-
ple occlusionqueriesat onetime,which tendto generatea smaller
numberof pipelinestallsin thehardware. Also, our hardwareex-
tensionis moreconservative in its core functionality, but hasthe
extra featurethatit would supportmultiple queries.Oneadditional
differenceis that, similar to Greeneet al. [14], cPLPincorporates
aneffective techniquefor filling up thedepthbuffer soasto min-
imize the numberof queries. We do not believe that it would be
difficult to incorporatethisfeaturewithin theframework of Bartzet
al.

The techniqueby Luebke andGeorges[19] describea screen-
basedtechniquefor exploiting “visibility portals”, that is, regions
betweencellswhichcanpotentiallylimit visibility from oneregion
of spaceto another. Their techniquecanbeseenasa dynamicway
to computeinformationsimilar to that in [28]. Onecan think of
cPLP’s obscuredfront asa singleoccluder, which hasa few holes.
If we think of theholesas“portals”, this is in certainrespectsanal-
ogousto thework of Luebke andGeorges. In thecontext of their
colonoscopy work, Hong et al. [15] proposea techniquewhich
mergesLuebke and Georges’s portalswith a depth-buffer based
techniquesimilar to ours. However, in their work, they exploit the
specialpropertiesof thecolonbeinga tube-like structure.

HyperZ[21] is aninterestinghardwarefeaturethathasbeenim-
plementedby ATI. HyperZ hasthreedifferent optimizationsthat
improve the performanceof 3D applications.The main thrustof
the optimizationsis to lower the memorybandwidthrequiredfor
updatingthe z-buffer, which they report is the single largestuser
of bandwidthon their graphicscards.Oneoptimizationis a tech-
nique for losslesscompressionof z-values. Another is a fast z-
buffer clear, which performsa lazy clearof thedepthvalues.ATI
also reportson an implementationof the hierarchicalz-buffer in
hardware. Detailson theactualfeaturesareonly sketchyandATI
hasnot yet exposedany of the functionality of their hardware to
applications.Consequently, it is notpossibleat thispoint to exploit
theirhardwarefunctionalityfor occlusionculling.

Anotherrecenttechniquerelatedto the hierarchicalZ-buffer is
describedby Xie andShantz[32]. They proposetheAdaptive Hi-
erarchicalVisibility (AHV) algorithmasa simplificationof HZB
for tile architectures.

AlonsoandHolzschuch[2] proposea techniquewhich exploits



thegraphicshardwarefor speedingup visibility queriesin thecon-
text of� global illumination techniques.Their techniqueis similar
to our item-buffer technique.Westermannet al. [29] proposea dif-
ferenttechniquefor usingtheOpenGLhistogramfunctionalityfor
occlusionculling. Their work involveshistogrammingthe stencil
buffer, insteadof thecolorbuffer asdonein ourwork.

6 Conc lusions

In thispaperwepresenteda novel conservative visibility algorithm
basedon the non-conservative PLP algorithm. Our approachex-
ploits severalfeaturesof PLPto quickly estimatethecorrectimage
(anddepthbuffer) andto determinewhich portionsof this estima-
tion were incorrect. To completeour conservative approach,we
requiredan efficient meansof performingvisibility querieswith
respectto the currentestimationimage. We showed how to im-
plementthesevisibility queriesusingeitherhardwareor software.
If fragment-countinghardwareis available(suchason HP fx, Di-
amondFireGL, SGI IR3), this is clearly the bestchoice. Other-
wise,theitem-buffer techniqueis thenext bestoption.As graphics
hardwarecontinuesto improve,andif theOpenGLhistogramming
featuresarefurtheroptimized,this approachmayoffer thehighest
levelsof interactive rendering.

OurcPLPapproachhasseveralnicefeatures.It providesamuch
higher level of interactivity than traditional renderingalgorithms,
suchasview frustumculling. As opposedto PLP, cPLPprovides
a conservative visibility culling algorithm. The preprocessingre-
quiredby our algorithm is very modest,andwe arenot required
to storesignificantocclusioninformation,suchasview-dependent
occludersor potentially visible sets. We arealsoable to run our
algorithmon all (polygonal)datasetssincewe do not requireany
underlyingstructureor format,suchasconnectivity information.

Furtherinvestigationis necessaryto studythe feasibility (cost)
of addingour hardwareextensionproposedin Section3.6 to cur-
rentarchitectures.As we show in this paper, it canfurtherimprove
theperformancesubstantiallyover techniquesthatprovide a single
counterof the fragmentsthat passthe depth-test,suchas the HP
occlusion-cullingextension,sinceit is ableto performseveral test
in parallel.
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Figure9: (a) A top-down view of ourdataset.(b)–(e)Sampleviews of therecordedpath.
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(d) (e) (f)

Figure10: Snapshotsduring threeiterationsof our cPLPalgorithm. Thecurrentfront (blue) andcompletedtiles (red)arehighlightedfor
iteration1 in (a)and(d), iteration2 in (b) and(e),anditeration3 in (c) and(f). Thefinal renderedimageis (c).
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• Motivation
• Hierarchical data structures
• Case study: BSP trees

– Scene representation
– Merging
– Culling
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Where Are They Used?

• On the scene for the hierarchical 
classification 

• For the viewspace to store pre-computed 
occluders and other information 

• To store the occlusion representatione
occlusion information
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Types of Data Structures Used 
for Visibility 

• Hierarchical bounding volumes
– Object based
– Possibly overlapping 

• Hierarchical space partitioning
– Space based
– Convex cells
– Disjoint cells
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Bounding Volumes
• Spheres
• Boxes

– Axis aligned
– Non-axis aligned

• Other 
• Effectiveness 

– Minimize void space – less false positives
– Minimize cost of intersection
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Hierarchical Bounding Volumes

• Leaves
– bounding volumes of individual objects

• Internal nodes
– Grouping based on either the scene hierarchy
– Or a clustering method



4

SIGGRAPH 2001, Los Angeles 7

Example, Hierarchical View 
Volume Culling
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Hierarchical Spatial Partitioning

• Oc-trees 
At each node split space half way along each of x, y and z  

using axis aligned planes

• Kd-trees
At each node split space along one of the 3 dimensions 

using an axis aligned plane

• BSP trees
At each node split space along one of the 3 dimensions 

using a NON axis aligned plane
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Hierarchical Space Partitioning

• Ease of implementation
– Oc-trees, kd-trees, bsp trees

• Speed of intersection
– Oc-trees, kd-trees, bsp trees

• Flexibility / functionality
– bsp trees, kd-trees, Oc-trees
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Hierarchical Classification 
occluder

hierarchical
representation

occluder
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Case Study: BSP trees

• Visibility ordering
• BSP trees as a hierarchy of volumes
• Hierarchical visibility culling 
• Tree merging
• Visibility culling using merging
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Visibility (Priority) Ordering

• Given a set of polygons S and a viewpoint vp, find 
an ordering on S st for any 2 polygons intersected 
by a ray through vp Pi has higher priority than Pj

Pi

Pj
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Schumacker 69

• A polygon/object on the same side as the 
viewpoint has higher priority than one on the 
opposite site

H1 H1
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Schumacker 69

• If we have more than one object on one side then 
repeat the same reasoning and add more 
partitioning planes between these objects

H1 H1

H2 H2
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Binary Space Partitioning Trees
(Fuchs, Kedem and Naylor `80)

• More general, can deal with inseparable 
objects

• Automatic, uses as partitions planes defined 
by the scene polygons

• Method has two steps:
– building of the tree independently of viewpoint
– traversing the tree from a given viewpoint to 

get visibility ordering
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Building a BSP Tree (Recursive)

A set of polygons

{1, 2, 3, 4, 5, 6}

The tree
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Building a BSP Tree (Recursive)

Select one polygon and partition the space and the polygons
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Building a BSP Tree (Recursive)

Recursively partition each sub-tree until all polygons are used up
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Building a BSP Tree (Incremental)

• The tree can also be built incrementally:
– start with a set of polygons and an empty tree
– insert the polygons into the tree one at a time
– insertion of a polygon is done by comparing  it 

against the plane at each node and propagating 
it to the right side, splitting if necessary

– when the polygon reaches an empty cell, make 
a node with its supporting plane
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Back-to-Front Traversal

void traverse_btf(Tree *t, Point vp)
{

if (t = NULL) return; 
endif

if (vp in-front of plane at root of t) 
traverse_btf(t->back, vp);
draw polygons on node of t;
traverse_btf;(t->front, vp);

else
traverse_btf(t->front, vp);
draw polygons on node of t;
traverse_btf(t->back, vp);

endif
}
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The BSP as a Hierarchy of 
Spaces

• Each node corresponds to a region of space
– the root is the whole of Rn

– the leaves are homogeneous regions

SIGGRAPH 2001, Los Angeles 22

BSP Representation of Polyhedra
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Occlusion BSP Tree (Similar to 
SVBSP Tree)

View
point

O1

O3

O2
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Occlusion BSP Tree

View
point

O1

O3

O2

Tree
1

2

O1

IN

out

out

out

1

2

Create shadow volume of occluder 1
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Occlusion BSP Tree

View
point

O1

O3

O2

Tree
1

2

O1

IN

out

out
3

4

O2

IN

out

out

out

1

2
3

4

Insert occluder 2 and augment tree with 
its shadow volume
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Occlusion BSP Tree

View
point

O1

O3

O2

Tree
1

2

O1

IN
out

3

4

O2

IN

out

out

out

1

2
3

4

5

6

O3

IN

out

out

out

O4

And so on until we add all occluders
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Example of Using BSP Trees for 
Visibility

• Extended Hudson method
– instead of constructing a shadow volume for 

each occluder, construct an occlusion BSP tree 
and compare the objects against the aggregate 
occlusion.

– If we have N occluders then we need O (logN)
comparisons for each object
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Occlusion BSP Tree

View
point

O1

O3

O2

Tree
1

2

O1

IN
out

3

4

O2

IN

out

out

out

1

2
3

4

5

6

O3

IN

out

out

outT1

T2

Check occlusion of objects T1 and T2 by 
inserting them in tree
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Hierarchical Occlusion Culling 
Using the Occlusion Tree (Bittner 98)

• Scene is represented by a k-d tree
• For a given viewpoint:

– select a set of potential occluders
– build an occlusion tree from these occluders
– hierarchically compare the k-d nodes against 

the occlusion tree
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Hierarchical Visibility Algorithm

• Viewpoint-to-region 
visibility
– visible
– invisible
– partially visible

• Refinement of partially visible regions

VISIBLE

CULLED

INVISIBLE
PARTIALLY

VISIBLE
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Tree Merging, Motivation

• Given two objects, or collections of objects, 
represented as BSP trees, tree merging can 
be used to solve a number of geometric 
problems, for example:
– set operations like union or intersection (eg for 

CSG)
– collision detection
– view volume and visibility culling 
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Tree Merging, Main Idea

• Merging T1 and T2 can be seen as inserting 
T2 into T1:
– starting at root of T1, partition T2 using the 

plane of T1, into T2
+ and T2

- and insert the two 
pieces recursively into the front and back sub-
tree of T1

– when a fragment of T2 reaches a cell then an 
external routine is called depending on the 
application
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Tree Merging, Pseudocode

Tree *merge_bspts(Tree *t1, Tree *t2)
{

if (leaf(t1) or leaf(t2))
return merge_tree_cell(t1, t2);

else
{t2+, t2-} = partition_tree(t2, shp(t1));
t1->front = merge_bspts(t1->front, t2+);
t1->back = merge_bspts(t1->back, t2-);
return t1;

endif
}
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Partitioning a Tree With a Plane

• Partitioning T2 with a plane of T1 (HT1) is a 
recursive procedure that involves inserting the 
plane of T1 into T2

– if  T2 is a single cell then T2
+ and T2

- are copies of 
T2

– else find T2
+ and T2

- with the following 3 steps: 

• find relation of  plane HT1 and plane at root of T2 (HT2)
• partition the sub-tree(s) of T2 in which HT1 lies
• combine resulting sub-trees above to form T2

+ and T2
-
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Find Relation of HT1 and HT2

• Note that we are interested only in the relation of 
the two planes within the space that T2 is defined 
(we should be talking of sub-hyperplanes)

• There are seven possible classifications which can 
be grouped into 3 sets: in one sub-tree, in both, 
coplanar

• For each classification we do two comparisons

SIGGRAPH 2001, Los Angeles 36

The Seven Classifications
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The Case Infront/Inback

T2
-->front = (T2->front)-

T2
-->root  = T2->root

T2
-->back = T2->back

T2
+ = (T2->front)+
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The Case Inboth/Inboth
Partition T2->front

Partition T2->back
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The Case Inboth/Inboth (cont.)

T2
+->front = (T2->front)+

T2
+->root  = T2->root

T2
+->back = (T2->back)+

T2
-->front = (T2->front)-

T2
-->root  = T2->root

T2
-->back = (T2->back)-
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Example Uses of Tree Merging

• Constructive Solid Geometry (CSG)
• Collision detection
• Shadows from area light sources
• Discontinuity meshing
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Visibility Acceleration With 
Merging

• View volume culling
– view volume as a BSP tree and merge with 

scene BSP tree (Naylor 92)

• Visibility culling
– Beam tracing (Naylor 92)

• The two above can be done in one go
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Merging the Occlusion Tree With 
the Scene k-d Tree (Chrysanthou 01)

• Build scene k-d tree 
• set the merge_cell_tree() to render the sub-

tree if the cell is visible
• at each frame do

– build occlusion/view volume bsp tree
– merge trees by inserting occlusion tree into 

scene k-d tree 
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Culling Using Tree Merging

• We get a very efficient occlusion/view 
volume comparison of the scene 

• The traversal is done in order (we use this to 
help our image based rendering technique)

• The occluders are selected in the same 
traversal 
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Culling Populated Environments
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Conclusion

• Overview of hierarchical data structures for 
visibility
– Bounding volumes
– Space partitioning
– BSP trees

• tree merging
• view volume and occlusion culling



Image Space Culling

Ned Greene
NVIDIA

General Approach

• Maintain coverage and depth info. 
as image is rendered

• Cull occluded geometry on-the-fly

Advantages

• Efficiency: Occlusion by actual scene 
geometry.

• Easy to fully exploit occluder fusion.
• Well suited to hierarchical methods.
• Well suited to hardware implementation.

Methods to be Discussed

• Hierarchical Z-Buffering
• Hierarchical Polygon Tiling
• Umbra Culling System (Aila & Miettinen)
• Sudarsky & Gotsman ‘99 (dynamic scenes)
• From-region vis. with 4D Hier. ZB.

Related Methods Covered Elsewhere

• HOMs (Zhang, Manoca, et al. ‘97)
• BSP-Tree Methods
• Klosowski & Silva ‘01 (PLP)
• Hardware-Assisted Box Culling

The “Hierarchical Visibility” Algorithm

• Hierarchical Z-Buffering
(Greene, Kass, Miller, Siggraph ‘93)

• Hierarchical Polygon Tiling
(Greene, Siggraph ‘96)



Hierarchical Visibility

• employs object-space and
image-space hierarchies

• enables hierarchical culling of   
occluded geometry

• result:  finds visible geometry
by logarithmic search

Object Space

• organize scene model in an octree
• traverse octree cubes front-to-

back, culling occluded cubes

Image Space

• image vis. info. in a pyramid
• perform image-space culling 

hierarchically

• If an octree cube is occluded by a z -
buffer, all geometry inside the cube 
is also occluded.

• Apply recursively through the 
octree.

Occluder

Recursive  Subdivision  Algorithm

Start with root cube.
• If octree cube is outside the viewing frustum, 

done.
• Test faces of the octree cube to see if it’s 

visible;  if occluded, done.
• Render geometry associated with octree cube.
• Subdivide octree node in front-to-back order, 

applying same algorithm to children.

Occluders

Properties  of  the  Algorithm

• Only visits visible octree 
nodes and their children.

• Only renders geometry in 
visible octree nodes.



z-pyramid

• Finest level is a standard z-buffer.
• Each pyramid sample is the farthest 

sample in the corresponding 2x2 
window at the next level.

• Each sample represents the farthest z 
for a square window of the screen.

A scene and
its z-pyramid

Does a Z-pyramid completely
occlude a primitive?

Step 1:
Find the finest-level pyramid value whose 
corresponding image region encloses the 
primitive.

screen Z-pyramid

Does a Z-pyramid completely
occlude a primitive?

Step 2:
If nearest z of primitive 
is farther away than 
this value, the primitive 
is completely 
occluded.

Z-pyramid value for
square window of screen

Nearest Z
of objectOccluder

Depth Complexity of 
the Visibility Computation

avg. depth 83.7

Naive  Z-Buffering

Depth Complexity of Visibility Computation

Hierarchical Visibility (log 
scale)

tiling polygons 
2.51    

z-pyramid tests 
.45

total
2.96



Hierarchical Visibility - Conclusion

• Works on arbitrary models.

• Effectively exploits object-space, 
image -space, and temporal coherence.

• Suitable for hardware acceleration.

Hierarchical Polygon Tiling
with Coverage Masks

(Siggraph ‘96)

Modifications to
Hierarchical Z-Buffering

• substitute  hierarchical tiling
for  z-buffering

• substitute  coverage pyramid
for  z-pyramid

• substitute  octree of BSP trees
for  octree

• tiling by recursive subdivision
• subdivision driven by 3-state
triage coverage masks

• tiling and visibility done
with bitmask operations (fast!)

Hierarchical Polygon Tiling

Hierarchical tiling by recursive
subdivision (Warnock ‘69) using
“triage” (3-state) coverage masks

& & =

Making a Polygon Mask

• look up edges masks 
• AND them together



outside

inside

represented as 
two bitmasks

Triage Polygon Mask

Recursive Tiling Procedure
• ignore outside cells
• write image in covered cells
• subdivide intersected cells

• • • •

• • • •

• • • •

• • • •

• • • •
• • • •
• • • •
• • • •

zoom zoomzoom

WHOLE 
SCREEN PIXEL

Advantages of Hierarchical Tiling
over Hierarchical Z-Buffering

• faster
• uses much less memory
when oversampling (e.g. 4%)

• no overwrite of raster samples

Disadvantage: Requires strict front-
to-back traversal.

work tiling cubes

.09 cells visited 
per pixel

work tiling polygons

1.01 cells visited
per pixel

3.1 seconds to
tile and filter on
4096 x 4096 grid

(75 mhz)

The Umbra Culling System
Aila & Miettinen ‘00

• Commercial scene-management software
for conservative culling.

• Use silhouettes of foreground objects as 
occluders.

• Optimized variations of hierarchical 
polygon tiling and HOMs.

• Realtime performance for a limited class 
of complex scenes.



Dynamic Scenes
Sudarsky & Gotsman ‘99

• Adapt hierarchical z-buffering and 
BSP-tree projections for dynamic 
scenes.

• Use “temporal bounding volumes” 
for dynamic objects .

From-region visibility with
4D Hierarchical Z-Buffering

(Greene ‘01)

Determine visibility within a shaft by 
recursive subdivision.

A

B

C

D
P3

P2

P1

A practical way to compute nearly 
exact from-region visibility for 
relatively simple polygonal scenes.

occluded
polygons in red

4D z-pyramid
for shaft
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Hierarchical Z-Buffer Visibility

Ned Greene*       Michael Kass        Gavin Miller

Apple Computer

(* and U. C. Santa Cruz)

A b s t r a c t

An ideal visibility algorithm should a) quickly reject most of the hidden geometry in a model a n d
b) exploit the spatial and perhaps temporal coherence of the images being generated.  Ray cas t ing
with spatial subdivision does well on criterion (a), but poorly on criterion (b).  Traditional Z-
buffer scan conversion does well on criterion (b), but poorly on criterion (a).  Here we present a
hierarchical Z-buffer scan-conversion algorithm that does well on both criteria.  The method u s e s
two hierarchical data structures, an object-space octree and an image-space Z pyramid, to accelerate
scan conversion.  The two hierarchical data structures make it possible to reject hidden geometry
very rapidly while rendering visible geometry with the speed of scan conversion.  For animation,
the algorithm is also able to exploit temporal coherence.  The method is well suited to models w i th
high depth complexity, achieving orders of magnitude acceleration in some cases compared t o
ordinary Z-buffer scan conversion.  

CR Categories and Subject Descriptors:  I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism - Hidden line/surface removal; J.6 [Computer-Aided Engineering]: Computer-
Aided I.3.1 [Computer Graphics]:  Hardware Architecture - Graphics Processors

Additional Key Words and Phrases: Octree, Pyramid, Temporal Coherence, Spatial Coherence,
Z Buffer.

1  Introduction

Extremely complex geometric databases offer interesting challenges for visibility a lgori thms.
Consider, for example, an interactive walk-through of a detailed geometric database describing a n
entire city, complete with vegetation,  buildings, furniture inside the buildings and the contents of
the furniture.  Traditional visibility algorithms running on currently available hardware cannot
come close to rendering scenes of this complexity at interactive rates and it will be a long t ime
before faster hardware alone will suffice.  In order to get the most out of available hardware, we
need faster algorithms that exploit properties of the visibility computation itself.

There are at least three types of coherence inherent in the visibility computation which can b e
exploited to accelerate a visibility algorithm.  The first is object-space coherence:  in many cases a
single computation can resolve the visibility of a collection of objects which are near each other i n
space.  The second is image-space coherence:  in many cases a single computation can resolve t h e
visibility of an object covering a collection of pixels.  The third is temporal coherence:  v i s i b i l i t y
information from one frame can often be used to accelerate visibility computation for the n e x t
frame.  Here we present a visibility algorithm which exploits all three of these types of coherence
and sometimes achieves orders of magnitude acceleration compared with traditional techniques.

The dominant algorithms in use today for visibility computations are Z-buffer scan conversion
and ray-tracing.  Since Z buffers do not handle partially transparent surfaces well, we will r e s t r i c t
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the discussion to models consisting entirely of opaque surfaces.  For these models, only rays f rom
the eye to the first surface are relevant for visibility, so the choice is between Z buffering and r a y -
casting (ray-tracing with no secondary rays).  

Traditional Z buffering makes reasonably good use of image-space coherence in the course of
scan conversion.  Implementations usually do a set-up computation for each polygon and then a n
incremental update for each pixel in the polygon.  Since the incremental update is typically much
less computation than the set-up, the savings from image-space coherence can be substantial. The
problem with the traditional Z-buffer approach is that it makes no use at all of object-space o r
temporal coherence.  Each polygon is rendered independently, and no information is saved from
prior frames.  For extremely complex environments like a model of a city, this is very ineff ic ient .
A traditional Z-buffer algorithm, for example, will have to take the time to render every polygon of
every object in every drawer of every desk in a building even if the whole building cannot be seen,
because the traditional algorithm can resolve visibility only at the pixel level.

Traditional ray-tracing or ray-casting methods, on the other hand, make use of object-space
coherence by organizing the objects in some type of spatial subdivision.  Rays from the eye a r e
propagated through the spatial subdivision until they hit the first visible surface.  Once a ray h i t s
a visible surface, there is no need to consider any of the surfaces in the spatial subdiv i s ions
further down along the ray, so large portions of the geometry may never have to be cons idered
during rendering.  This is an important improvement on Z buffering, but it makes no use of temporal
or image-space coherence.  While ray-casting algorithms that exploit temporal coherence have been
explored, it seems extremely difficult to exploit image-space coherence in traditional ray cas t ing
algori thms.

Here we present a visibility algorithm which combines the strengths of both ray-casting and Z
buffering.  To exploit object-space coherence, we use an octree spatial subdivision of the t y p e
commonly used to accelerate ray tracing.  To exploit image-space coherence, we augment t r ad i t i ona l
Z-buffer scan conversion with an image-space Z pyramid that allows us to reject hidden geometry
very quickly.  Finally, to exploit temporal coherence, we use the geometry that was visible in t h e
previous frame to construct a starting point for the algorithm.  The result is an algorithm which i s
orders of magnitude faster than traditional ray-casting or Z buffering for some models we have
tried.  The algorithm is not difficult to implement and works for arbitrary polygonal databases.  

In section II, we survey the most relevant prior work on accelerating ray casting and s can
conversion.  In section III, we develop the data structures used to exploit object-space, image-space
and temporal coherence.  In section IV, we describe the implementation and show results for some
complex models containing hundreds of millions of polygons.  

2  Prior Work

There have been many attempts to accelerate traditional ray-tracing and Z buffering techniques .
Each of these attempts exploits some aspect of the coherence inherent in the visibility computation
itself.  None of them, however, simultaneously exploits object-space, image-space and temporal
coherence.

The ray-tracing literature abounds with references to object-space coherence.  A variety of
spatial subdivisions have been used to exploit this coherence and they seem to work quite well (e.g.
[1,2,3,4,5]).  Temporal coherence is much less commonly exploited in practice, but var ious
techniques exist for special cases.  If all the objects are convex and remain stationary while t h e
camera moves, then there are constraints on the way visibility can change [6] which a ray t r a c e r
might exploit.  On the other hand, if the camera is stationary, then rays which are unaffected by t h e
motion of objects can be detected and used from the previous frame [7].  When interactivity is not a n
issue and sufficient memory is available, it can be feasible to render an entire animation sequence
at once using spacetime bounding boxes [8,9].  While these techniques make good use of object-space
coherence and sometimes exploit temporal coherence effectively, they unfortunately make little o r
no use of image-space coherence since each pixel is traced independently from its neighbors.  There
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are heuristic methods which construct estimates of the results of ray-tracing a pixel from t h e
results at nearby pixels (e.g. [10]), but there seems to be no guaranteed algorithm which makes good
use of image-space coherence in ray tracing.

With Z-buffer methods (and scan conversion methods in general) the problems are ve ry
different.  Ordinary Z-buffer rendering is usually implemented with an initial set-up computation
for each primitive followed by a scan-conversion phase in which the affected pixels a r e
incrementally updated.  This already makes very good use of image-space coherence, so t h e
remaining challenge with  Z-buffer methods is to exploit object-space and temporal coherence
effectively.

A simple method of using object-space coherence in Z-buffer rendering is to use a s p a t i a l
subdivision to cull the model to the viewing frustum [11].  While this can provide subs t an t i a l
acceleration, it exploits only a small portion of the object-space coherence in models with h igh
depth complexity.  In architectural models, for example, a great deal of geometry hidden b e h i n d
walls may lie within the viewing frustum.

In order to make use of more of the object-space coherence in architectural models, Airey et. a l .
[12,13] and subsequently Teller and Sequin [15] proposed dividing models up into a set of d i s jo in t
cells and precomputing the potentially visible set (PVS) of polygons from each cell.  In order t o
render an image from any viewpoint within a cell, only the polygons in the PVS need be considered.
These PVS schemes are the closest in spirit to the visibility algorithm presented here since t h e y
attempt to make good use of both object-space and image-space coherence.  Nonetheless, they s u f f e r
from some important limitations.  Before they can be used at all, they require an expensive
precomputation step to determine the PVS and a great deal of memory to store it.  Teller and Sequin,
for example, report over 6 hours of precomputation time on a 50 MIP machine to calculate 58Mb of
PVS data needed for a model of 250,000 polygons [15].  Perhaps more importantly, the way t h e s e
methods make use of cells may limit their appropriateness to architectural models.  In order t o
achieve maximum acceleration, the cells must be 3D regions of space which are almost e n t i r e l y
enclosed by occluding surfaces, so that most cells are hidden from most other cells.  Fo r
architectural models, this often works well since the cells can be rooms, but for outdoor scenes a n d
more general settings, it is unclear whether or not PVS methods are effective.  In addition, t h e
currently implemented algorithms make very special use of axially-aligned polygons such as f l a t
walls in rectilinear architectural models.  While the methods can in principle be extended to u s e
general 3D polygons for occlusion, the necessary algorithms have much worse computational
complexity [15].  Finally, although the implementations prefetch PVS data for nearby cells to avoid
long latencies due to paging, they cannot be said to exploit temporal coherence in the v i s i b i l i t y
computation very effectively.

The algorithm presented here shares a great deal with the work of Meagher [16] who used object-
space octrees with image-space quadtrees for rendering purposes.  Meagher tried to display t h e
octree itself rather than using it to cull a polygonal database, so his method is directly appl icab le
to volume, rather than surface models.  Nonetheless his algorithm is one of the few to make use of
both object-space and image-space coherence.  The algorithm does not exploit temporal coherence.

3  Hierarchical Visibility

The hierarchical Z-buffer visibility algorithm uses an octree spatial subdivision to exp lo i t
object-space coherence, a Z pyramid to exploit image-space coherence, and a list of prev ious ly
visible octree nodes to exploit temporal coherence.  While the full value of the algorithm i s
achieved by using all three of these together, the object-space octree and the image-space Z p y r a m i d
can also be used separately.  Whether used separately or together, these data structures make i t
possible to compute the same result as ordinary Z buffering at less computational expense.
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3.1  Object-space octree

Octrees have been used previously to accelerate ray tracing [5] and rendering of volume d a t a
sets [16] with great effectiveness.  With some important modification, many of the principles of
these previous efforts can be applied to Z-buffer scan conversion.  The result is an algorithm which
can accelerate Z buffering by orders of magnitude for models with sufficient depth complexity.

In order to be precise about the octree algorithm, let us begin with some simple definitions.  We
will say that a polygon is hidden with respect to a Z buffer if no pixel of the polygon is closer to t h e
observer than the Z value already in the Z buffer.  Similarly, we will say that a cube is hidden wi th
respect to a Z buffer if all of its faces are hidden polygons.  Finally, we will call a node of the oct ree
hidden if its associated cube is hidden.  Note that these definitions depend on the sampling of the Z
buffer.  A polygon which is hidden at one Z-buffer resolution may not be hidden at another.

With these definitions, we can state the basic observation that makes it possible to combine Z
buffering with an octree spatial subdivision:  If a cube is hidden with respect to a Z buffer, then a l l
polygons fully contained in the cube are also hidden.  What this means is the following:  if we s can
convert the faces of an octree cube and find that each pixel of the cube is behind the c u r r e n t
surface in the Z buffer, we can safely ignore all the geometry contained in that cube.

From this observation, the basic algorithm is easy to construct.  We begin by placing t h e
geometry into an octree, associating each primitive with the smallest enclosing octree cube.  Then
we start at the root node of the octree and  render it using the following recursive steps:  First, we
check to see if the octree cube intersects the viewing frustum.  If not, we are done.  If the cube does
intersect the viewing frustum, we scan convert the faces of the cube to determine whether or not t h e
whole cube is hidden.  If the cube is hidden, we are done.  Otherwise, we scan convert any geometry
associated with the cube and then recursively render its children in front-to-back order.

We can construct the octree with a simple recursive procedure.  Beginning with a root cube la rge
enough to enclose the entire model  and the complete list of geometric primitives, we recur s ive ly
perform the following steps:  If the number of primitives is sufficiently small, we associate all of
the primitives with the cube and exit.  Otherwise, we associate with the cube any primitive which
intersects at least one of three axis-aligned planes that bisect the cube. We then subdivide t h e
octree cube and call the procedure recursively with each of the eight child cubes and the portion of
the geometry that fits entirely in that cube.

The basic rendering algorithm has some very interesting properties.  First of all, it on ly
renders geometry contained in octree nodes which are not hidden.  Some of the rendered polygons
may be hidden, but all of them are “nearly visible” in the following sense:  there is some place we
could move the polygon where it would be visible which is no further away than the length of t h e
diagonal of its containing octree cube.  This is a big improvement over merely culling to the viewing
frustum.  In addition, the algorithm does not waste time on irrelevant  portions of the octree since i t
only visits octree nodes whose parents are not hidden. Finally, the algorithm never visits an oct ree
node more than once during rendering.  This stands in marked contrast to ray-tracing through a n
octree where the root node  is visited by every pixel and other nodes may be visited tens of
thousands of times.  As a result of these properties, the basic algorithm culls hidden geometry ve ry
eff ic ient ly .

A weakness of the basic algorithm is that it associates some small geometric primitives w i th
very large cubes if the primitives happen to intersect the planes which separate the cube ' s
children.  A small triangle which crosses the center of the root cube, for example, will have to b e
rendered anytime the entire model is not hidden.  To avoid this behavior, there are two b a s i c
choices.  One alternative is to clip the problematic small polygons so they fit in much sma l l e r
octree cells.  This has the disadvantage of increasing the number of primitives in the database.  The
other alternative is to place some primitives in multiple octree cells.  This is the one we have
chosen to implement.  To do this, we modify the recursive construction of the octree as follows.   I f
we find that a primitive intersects a cube's dividing planes, but is small compared to the cube, t h e n
we no longer associate the primitive with the whole cube.  Instead we associate it with all of t h e
cube's children that the primitive intersects.  Since some primitives are associated with more t h a n



5

one octree node, we can encounter them more than once during rendering.  The first time we r e n d e r
them, we mark them as rendered, so we can avoid rendering them more than once in a given frame.

3.2  Image-space Z pyramid

The object-space octree allows us to cull large portions of the model at the cost of s c a n -
converting the faces of the octree cubes.  Since the cubes may occupy a large number of pixels in t h e
image, this scan conversion can be very expensive.  To reduce the cost of determining cube
visibility, we use an image-space Z pyramid.  In many cases, the Z pyramid makes it possible t o
conclude very quickly a large polygon is hidden, making it unnecessary to examine the polygon
pixel by pixel.

The basic idea of the Z pyramid is to use the original Z buffer as the finest level in the p y r a m i d
and then combine four Z values at each level into one Z value at the next coarser level by choosing
the farthest Z from the observer.  Every entry in the pyramid therefore represents the farthest Z f o r
a square area of the Z buffer.  At the coarsest level of the pyramid there is a single Z value which i s
the farthest Z from the observer in the whole image.  

Maintaining the Z pyramid is an easy matter.  Every time we modify the Z buffer, we propagate
the new Z value through to coarser levels of the pyramid.  As soon as we reach a level where t h e
entry in the pyramid is already as far away as the new Z value, we can stop.

In order to use the Z pyramid to test the visibility of a polygon, we find the finest-level sample
of the pyramid whose corresponding image region covers the screen-space bounding box of t h e
polygon.  If the nearest Z value of the polygon is farther away than this sample in the Z pyramid, we
know immediately that the polygon is hidden.  We use this basic test to determine the visibility of
octree cubes by testing their polygonal faces, and also to test the visibility of model polygons.

While the basic Z-pyramid test can reject a substantial number of polygons, it suffers from a
similar difficulty to the basic octree method.    Because of the structure of the pyramid regions, a
small polygon covering the center of the image will be compared to the Z value at the coarsest level
of the pyramid.  While the test is still accurate in this case, it is not particularly powerful.  

A definitive visibility test can be constructed by applying the basic test recursively th rough
the pyramid.  When the basic test fails to show that a polygon is hidden, we go to the next f i n e r
level in the pyramid where the previous pyramid region is divided into four quadrants.  Here we
attempt to prove that the polygon is hidden in each of the quadrants it intersects.  For each of t h e s e
quadrants, we  compare the closest Z value of the polygon in the quadrant to the value in the Z
pyramid.  If the Z-pyramid value is closer, we know the polygon is hidden in the quadrant.  If we
fail to prove that the primitive is hidden in one of the quadrants, we go to the next finer level of t h e
pyramid for that quadrant and try again.  Ultimately, we either prove that the entire polygon i s
hidden, or we recurse down to the finest level of the pyramid and find a visible pixel.  If we find a l l
visible pixels this way, we are performing scan conversion hierarchically.

A potential difficulty with the definitive visibility test is that it can be expensive to compute
the closest Z value of the polygon in a quadrant.  An alternative is to compare the value in t h e
pyramid to the closest Z value of the entire polygon at each step of the recursion.  With t h i s
modification, the test is faster and easier to implement, but no longer completely def ini t ive .
Ultimately, it will either prove that the entire polygon is hidden, or recurse down to the finest level
of the pyramid and find a pixel it cannot prove is hidden.  Our current implementation uses t h i s
technique.  When the test fails to prove that a polygon is hidden, our implementation reverts t o
ordinary scan conversion to establish the visibility definitively.

3.3  Temporal coherence list

Frequently, when we render an image of a complex model using the object-space octree, only a
small fraction of the octree cubes are visible.  If we render the next frame in an animation,  most of
the cubes visible in the previous frame will probably still be visible.  Some of the cubes visible i n
the last frame will become hidden and some cubes hidden in the last frame will become visible, b u t
frame-to-frame coherence in most animations ensures that there will be relatively few changes i n
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cube visibility for most frames (except scene changes and camera cuts).  We exploit this fact in a
very simple way with the hierarchical visibility algorithm.  We maintain a list of the visible cubes
from the previous frame, the temporal coherence l i s t ,  and simply render all of the geometry on t h e
list, marking the listed cubes as rendered, before commencing the usual algorithm.  We then t a k e
the resulting Z buffer and use it to form the initial Z pyramid.  If there is sufficient f rame-to-f rame
coherence, most of the visible geometry will already be rendered, so the Z-pyramid test will b e
much more effective than when we start from scratch.  The Z-pyramid test will be able to prove w i th
less recursion that octree cubes and model polygons are hidden.  As we will see in section IV, t h i s
can accelerate the rendering process substantially.  After rendering the new frame, we update t h e
temporal coherence list by checking each of the cubes on the list for visibility using the Z-pyramid
test.  This prevents the temporal coherence list from growing too large over time.

One way of thinking about the temporal coherence strategy is that we begin by guessing t h e
final solution.  If our guess is very close to the actual solution, the hierarchical v i s i b i l i t y
algorithm can use the Z pyramid to verify the portions of the guess which are correct much f a s t e r
than it can construct them from scratch.  Only the portions of the image that it cannot verify a s
being correct require further processing.  

4  Implementation and Results

Our initial implementation of the hierarchical visibility algorithm is based on general purpose ,
portable C code and software scan conversion.  This implementation uses the object-space octree,
the image-space Z pyramid and the temporal coherence list.  Even for relatively simple models t h e
pure software algorithm is faster than traditional software Z buffering, and for complex models t h e
acceleration can be very large.  

In order to test the algorithm, we constructed an office module consisting of 15K polygons a n d
then replicated the module in a three dimensional grid.  Each module includes a stairway with a
large open stairwell making it possible to see parts of the neighboring floors.  None of the office
walls extends to the ceiling, so from a high enough point in any of the cubicles, it is possible to s e e
parts of most of the other cubicles on the same floor.  

For simple models with low depth complexity, the hierarchical visibility method can b e
expected to take somewhat longer than traditional scan conversion due to the overhead of
performing visibility tests on octree cubes and the cost of maintaining a Z pyramid.  To measure t h e
algorithm's overhead on simple models, we rendered a single office module consisting of 15K
polygons at a viewpoint from which a high proportion of the model was visible.  Rendering time for a
512 by 512 image was 1.52 seconds with the hierarchical visibility method and 1.30 seconds w i th
traditional scan conversion, indicating a performance penalty of 17%.  When we rendered t h r e e
instances of the model (45K polygons), the running time was 3.05 seconds for both methods
indicating that this level of complexity was the breakeven point for this particular model.
Hierarchical visibility rendered nine instances of the same model (105K polygons) in 5.17 seconds,
while traditional scan conversion took 7.16 seconds.

The chief value of the hierarchical visibility algorithm is, of course, for scenes of much h ighe r
complexity.  To illustrate the point, we constructed a 33 by 33 by 33 replication of the office
module which consists of 538 million polygons. The model is shown rendered in figure 1.  5 9 . 7
million polygons lie in the viewing frustum from this viewpoint, about one tenth of the e n t i r e
model.  Using the hierarchical visibility method, the Z-pyramid test was invoked on 1746 oct ree
cubes and culled about 27% of the polygons in the viewing frustum..  The bounding boxes of 6 8 7
cubes were scan converted which culled nearly 73% of the model polygons in the viewing f rus tum,
leaving only 83.0K polygons of which 41.2K were front facing (.000076 of the total model) to b e
scan converted in software.  On an SGI Crimson Elan, the entire process took 6.45 seconds.
Rendering this model using traditional Z buffering on the Crimson Elan hardware took
approximately one hour and fifteen minutes.  Rendering it in software on the Crimson would
probably take days.
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The center left panel of figure 1 shows the depth complexity processed by the algorithm for t h e
image in the upper left.  The depth complexity displayed in this image is the number of times each
pixel was accessed in a box visibility test or in Z-buffer polygon scan conversion.  Note the b r i g h t
regions corresponding to portions of the image where it is possible to see far into the model; t h e s e
are regions where the algorithm has to do the most work.  In this image, the average d e p t h
complexity due to box scans is 7.23,  and due to polygon scan-conversion is 2.48 for a total of 9 .71 .
The maximum depth complexity is 124.  Dividing the number of times the Z pyramid is accessed b y
the number of pixels on the screen lets us assign a value of .43 for the “depth complexity” of the Z-
pyramid tests.  Thus, the total average depth complexity of Z-pyramid tests, box scans and polygon
scans is 10.14.  Note that this is not the depth complexity of the model itself, but only the d e p t h
complexity of the hierarchical visibility computation.  Computing the true depth complexity of t h e
scene would require scan converting the entire model of 538 million polygons in software, which we
have not done.  In the lower left of figure 1, we show the viewing frustum and the octree subdivis ion .
The two long strings of finely divided boxes correspond to the two brightest regions in the d e p t h
complexity image.  Note that the algorithm is able to prove that large octree nodes in the d i s t ance
are hidden.  In the lower right, we show the Z pyramid for the scene.  Even at fairly coarse
resolutions, the Z pyramid contains a recognizable representation of the major occluders in t h e
scene.  

The office environment of figure 1 was chosen in part because it is a particularly d i f f i cu l t
model for PVS methods.  From every office cubicle in this environment, there are points from which
almost every other cubicle on the same floor is visible.  As a result, if the cubicles were used a s
cells in a PVS method, the potentially visible set for each cell would have to include nearly all t h e
cells on its floor and many on other floors.  Since each floor contains about 4 million polygons,  t h e
PVS methods would probably have to render many more polygons than the hierarchical method.  I n
addition, the precomputation time for published PVS methods would be prohibitive for a model of
this complexity.  This model has 2000 times as many polygons as the model described by Teller a n d
Sequin [15] which required 6 hours of pre-processing.  

Admittedly, the replication of a single cell in the model means that it may not be a
representative example, but it will be some time before people use models of this complexi ty
without a great deal of instancing.  The hierarchical visibility program we used for this example
makes use of the replication in only two ways.  First, the algorithm does not need to store half a
billion polygons in main memory.  Second, the algorithm only needs to consider a single cell i n
constructing the octree.  These same simplifications would apply to any complex model using a
great deal of instancing.

Figure 2 shows the hierarchical visibility method applied to an outdoor scene consisting of a
terrain mesh with vegetation replicated on a two-dimensional grid.  The model used for the lower
left image consists of 53 million polygons, but only about 25K polygons are visible from this po in t
of view.  Most of the model is hidden by the hill or is outside the viewing frustum.  The
corresponding depth complexity image for hierarchical visibility computations is shown at the t o p
left.  The algorithm works hardest near the horizon where cube visibility is most difficult t o
establish.  This frame took 7 seconds to render with software scan conversion on an SGI Crimson.  
In the lower right, we show a model consisting of 5 million polygons.  Even though the model i s
simpler than the model in the lower left, the image is more complicated and took longer to r e n d e r
because a much larger fraction of the model is visible from this point of view.  This image took 4 0
seconds to render with software scan conversion on an SGI Crimson.  The average depth complexi ty
for the scene is 7.27, but it reaches a peak of 85 in the bright areas of the depth complexity image
in the upper right.  These outdoor scenes have very different characteristics from the bu i ld ing
interiors shown in figure 1 and are poorly suited to PVS methods because (a) very few of t h e
polygons are axis-aligned and (b) the cell-to-cell visibility is not nearly as limited as in a n
architectural interior.  Nonetheless, the hierarchical visibility algorithm continues to work
effectively.
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Fig. 3:  Total time in seconds to render all windows as a
unction of the number of pixels on the side of each window.

4.1  Parallelizability and Image-space coherence

We have made our hierarchical visibility implementation capable of dividing the image into a
grid of smaller windows, rendering them individually and compositing them into a final image.  The
performance of the algorithm as the window size is varied tells us about the parallel performance of
the algorithm and the extent to which it makes use of image-space coherence.  If, like most r a y
tracers, the algorithm made no use of image-space coherence, we could render each pixel sepa ra te ly
at no extra cost.  Then it would be fully parallelizable.  At the other extreme, if the algorithm made
the best possible use of image-space coherence, it would render a sizeable region of pixels w i th
only a small amount more computation than required to render a single pixel.  Then it would b e
difficult to parallelize.  Note that if we shrink the window size down to a single pixel, t h e
hierarchical visibility algorithm becomes a ray caster using an octree subdivision.

Figure 3 graphs the rendering time for a frame from a walk-through of the model shown i n
figure 1 as a function of the window size.  For window sizes from 32 by 32 on up, the curve i s
relatively flat, indicating that the algorithm should parallelize fairly well.  For window sizes below
32 by 32, however, the slope of the curve indicates that the time to render a window is a lmost
independent of the window size. The algorithm can, for example, render a 32 by 32 region for on ly
slightly more than four times the computational expense of ray-casting a single pixel with t h i s
algorithm.  Comparing the single pixel window time to the time for the whole image, we find t h a t
image-space coherence is responsible for a factor of almost 300 in running time for this example.

4.2  Use of graphics hardware

In addition to the pure software implementation, we have attempted to modify the algorithm t o
make the best possible use of available commercial hardware graphics accelerators.  This r a i s e s
some difficult challenges because the hierarchical visibility algorithm makes slightly d i f f e ren t
demands of scan-conversion hardware than traditional Z buffering.  In particular, the use of oct ree
object-space coherence depends on being able to determine quickly whether any pixel of a polygon
would be visible if it were scan converted.  Unfortunately, the commercial hardware g raph ics
pipelines we have examined are either unable to answer this query at all, or take milliseconds t o
answer it.  One would certainly expect some delay in getting information back from a g raph ics
pipeline, but hardware designed with this type of query in mind should be able to return a r e s u l t
in microseconds rather than milliseconds.  

We have implemented the object-space octree on a Kubota Pacific Titan 3000 workstation w i th
Denali GB graphics hardware.  The Denali supports an unusual graphics library call which
determines whether or not any pixels in a set of polygons are visible given the current Z buffer.  We
use this “Z query” feature to determine the visibility of octree cubes.  The cost of a Z query depends
on the screen size of the cube, and it can take up to several milliseconds to determine whether o r
not a cube is visible. Our implementation makes no use of the Z pyramid because the cost of get t ing
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the required data to and from the Z buffer would exceed any possible savings.  On a walk-through of
a version of the office model with 1.9 million polygons, the Titan took an average of .54 seconds p e r
frame to render 512 by 512 images.  Because of the cost of doing the Z query, we only t e s t e d
visibility of octree cubes containing at least eight hundred polygons.  Even so, 36.5% of the r u n n i n g
time was taken up by Z queries.  If Z query were faster, we could use it effectively on octree cubes
containing many fewer polygons and achieve substantial further acceleration.  The Ti tan
implementation has not been fully optimized for the Denali hardware and makes no use of temporal
coherence, so these performance figures should be considered only suggestive of the machine ' s
capabi l i t i es .

The other implementation we have that makes use of graphics hardware runs on SGI
workstations.  On these workstations, there is no way to inquire whether or not a polygon is v i s ib le
without rendering it, so we use a hybrid hardware/software strategy.  We do the first frame of a
sequence entirely with software.  On the second frame, we render everything on the temporal
coherence list with the hardware pipeline.  Then we read the image and the Z buffer from t h e
hardware, form a Z pyramid and continue on in software.  With this implementation, on the models
we have tried, temporal coherence typically reduces the running time by a factor of between 1.5 a n d
2 .

In the course of a walk-through of our office model, we rendered the frame in the upper left of
figure 1 without temporal coherence, and then the next frame shown in the upper right of figure 1
using temporal coherence.  The new polygons rendered in software are shown in magenta f o r
illustration. For the most part, these are polygons that came into view as a result of panning t h e
camera. The center right shows the depth complexity of the hierarchical computation for this frame.
The image is much darker in most regions because the algorithm has much less work to do given t h e
previous frame as a starting point.  This temporal coherence frame took 3.96 seconds to render on a
Crimson Elan, as compared with 6.45 seconds to render the same frame without temporal coherence.

Current graphics accelerators are not designed to support the rapid feedback from the p ipe l i ne
needed to realize the full potential of octree culling in the hierarchical visibility algori thm.
Hardware designed to take full advantage of the algorithm, however, could make it possible t o
interact very effectively with extremely complex environments as long as only a manageable n u m b e r
of the polygons are visible from any point of view.  The octree subdivision, the Z pyramid and t h e
temporal coherence strategy are all suitable for hardware implementation.

5  Conclusion

As more and more complex models become commonplace in computer graphics, it becomes
increasingly important to exploit the available coherence in the visibility computation.  Here we
present an algorithm which combines the ability to profit from image-space coherence of Z-buffer
scan conversion with the ability of ray tracing to avoid considering hidden geometry.  It appears t o
be the first practical algorithm which materially profits from object-space, image-space a n d
temporal coherence simultaneously.  The algorithm has been tested and shown to work effectively on
indoor and outdoor scenes with up to half a billion polygons.

The hierarchical visibility algorithm can make use of existing graphics accelerators wi thout
modification.  Small changes in the design of graphics accelerators, however, would make a l a rge
difference in the performance of the algorithm.  We hope that the appeal of this algorithm w i l l
induce hardware designers to alter future graphics hardware to facilitate hierarchical v i s i b i l i t y
computations.
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Figure 1:  A 538 million polygon office environment rendered with hierarchical visibility.  
Upper left:  Rendered image.  Center left:  Depth complexity of the hierarchical visibility 
computation.  Lower Left:  Viewing frustum and octree cubes examined while rendering 
the image in the upper left.  Lower right:  Z pyramid used to cull hidden geometry.  Upper 
right:  Image rendered with temporal coherence.  Polygons not rendered in the previous 
frame are shown in magenta.  Center right: Depth complexity of the hierarchical visibility 
computation for the frame rendered using temporal coherence.



1 2

     

Figure 2:  Lower left:  Image of a 53 million polygon model (mostly hidden) rendered using 
hierarchical visibility.  Upper left:  Corresponding depth complexity for the hierarchical 
visibility computation.  Lower right:  Image of a 5 million polygon model.  Upper right:  
Corresponding depth complexity for the hierarchical visibility computation.



Technical Note

A Quality Knob  for Non-Conservative Culling with Hierarchical Z-Buffering

Ned Greene

NVIDIA

When rendering a deeply occluded scene with hierarchical z-buffering [GKM93] and the scene is too
complex to render at the desired frame rate, there is a simple way to accelerate rendering by trading off image
quality for rendering speed.  This non-conservative culling method provides an error-bounded "quality knob" for
hierarchical z-buffering.

With hierarchical z-buffering, z-buffer samples are maintained in an image pyramid called a z-pyramid,
which is organized in NxN tiles (for example, 4x4 tiles).  At all levels of a conventional z-pyramid, each z value
is the farthest z in the corresponding NxN window of the adjacent finer level.  Therefore, each z value represents
the farthest z for a square region of the screen.  This data structure enables efficient hierarchical culling of
primitives and bounding boxes during hierarchical tiling, as described in [GKM93].

To maintain a conventional z-pyramid, whenever a z value is overwritten in an NxN tile in the z-buffer (i.e.,
the finest level of the z-pyramid), the farthest z in that tile is determined, and if this z value is nearer than the
value stored for that tile in the next-to-the-finest pyramid level, that value is overwritten with the nearer value.
This propagation procedure continues through the coarser levels of the pyramid until the existing entry in the
pyramid is already as far away as the new z value.

Our method of non-conservative culling requires only a simple change to this propagation procedure. When
a z-buffer sample is overwritten in an NxN tile in the z-buffer, instead of propagating that tile s farthest z value
through the pyramid, we propagate the Eth-to-the-farthest z value, where E is an error limit which can be set to
any value from zero to N2-1.  Propagation through coarser pyramid levels is done as with the original algorithm.
With this simple change to propagation, the standard tiling
procedure for hierarchical z-buffering (see GKM[93]) will
cull primitives within regions of the screen where they are
visible at E or fewer samples within any finest-level tile, and
the output image will have E or fewer errors within any NxN
screen tile.  By an error at an image sample we mean that its
color differs from a standard z-buffer image.

For example, the figure on the right shows a side view of
a finest-level 4x4 tile which has been covered by a polygon P.
Assuming that the error limit is one, the next-to-the-farthest z
value will be propagated when P is processed, which will later
result in culling bounding box B within the tile, even though
B is visible at one image sample, labeled s.

This non-conservative culling method provides a simple quality knob  that enables sacrificing image
quality in exchange for faster rendering.  If E is 0, a standard error-free z-buffer image is created, if E is 1 there
will be at most one error in any NxN tile of samples in the output image, and so forth.

The method is particularly effective when the depth image of a scene contains numerous pinholes,
because E or fewer pinholes within a finest-level tile will be plugged  automatically.   The method is also
advantageous when applied to culling bounding boxes that are only "slightly visible," since this saves the work
required to process all of the primitives they contain.  Optionally, a separate z-pyramid (for levels coarser than
the z-buffer) can be maintained for non-conservative culling of bounding boxes, so that tiling of primitives is
unaffected.

In conclusion, the quality knob is a useful mechanism for a certain class of scenes, producing
approximately correct images considerably faster than standard hierarchical z-buffering.

Reference:  [GKM93]  N. Greene, M. Kass, and G. Miller, “Hierarchical Z-Buffer Visibility,'' Proc. of SIGGRAPH '93,
July 1993, 231-238.
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Abstract 
We introduce a method for occlusion culling tailored 

to z-buffer systems having rendering hardware that effec-
tively reduces memory traffic in z and color values.  The 
central innovation is to insert a culling stage into the 
pipeline that culls occluded geometry using a low-band-
width variation of hierarchical z-buffering that performs 
conservative culling using only a small fraction of the 
bandwidth and storage of the original algorithm.  Culling 
is performed with simple polygon-tiling operations that are 
well suited to implementation in hardware.  On some 
scenes that we tested, culling reduced image memory traf-
fic to less than standard z-buffering would generate when 
rendering just the polygons that are actually visible in the 
output image.  

For deeply occluded scenes organized in bounding 
boxes, we enable efficient on-the-fly box culling on the 
host by providing the "tip" of the culling stage's z-pyra-
mid, which requires only occasional low-bandwidth com-
munication.  Even for very complex scenes, the combina-
tion of front-to-back traversal of bounding boxes, box 
culling on the host, and an optimized culling stage can 
reduce image memory traffic more effectively than know-
ing in advance which polygons are visible, and rendering 
only them with standard z-buffering. 

 
 

1  Introduction 
The growing complexity of computer-animated scenes 

raises the relative importance of occlusion culling, which 
is the culling of occluded geometry prior to rasterization.  
In principle, accelerating z-buffer hardware with occlusion 
culling offers the prospect of rendering very deeply oc-
cluded scenes in real time, since only the visible parts of a 
scene need to be sent through the pipeline and rendered.  
In practice, however, existing culling algorithms have 
limitations, and none is capable of enabling real-time ren-
dering of arbitrary scenes, a term that we will apply to 
polygonal scenes that have no particular occlusion rela-
tionships, may be deeply occluded, and may have high 
visible complexity.   Some methods work effectively only 
on a limited class of models.  For example, some methods 
fail to exploit occluder fusion, which is the collective 
occlusion of objects that overlap or abut on the screen.  
Other methods are completely general, but too slow to 
perform culling in real time.  Moreover, culling algorithms 
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generally make scene management much more 
complicated, for example, by requiring that the scene 
model be maintained in complex data structures or by in-
curring communication delays that hamper processing.  
Ideally, a culling method should work effectively on arbi-
trary polygonal scenes, efficiently cull occluded geometry 
using all available occluder fusion, and enable efficient 
on-the-fly scene management that is unimpeded by com-
munication delays. 

Although occlusion culling is usually thought of in the 
context of deeply occluded scenes, there is also ample 
opportunity for visibility operations to accelerate render-
ing of low-depth scenes.  For example, standard z-buffer-
ing clears and reads the z-buffer at image samples before 
they are written for the first time.  We show how these z 
reads can be avoided.  

Our approach to devising a culling method that works 
automatically and effectively on virtually any polygonal 
model is to modify and optimize the hierarchical visibility 
algorithm [GKM93,Gre95].  This algorithm renders a scene 
that is organized in nested bounding boxes by traversing 
the boxes front to back, culling occluded boxes as they are 
encountered, and rendering the polygons in visible boxes 
with hierarchical z-buffering.  This algorithm is very 
efficient because it needs to render only the polygons in 
visible boxes and hierarchical z-buffering efficiently 
processes individual polygons.  

This article optimizations to the hierarchical visibility 
algorithm that facilitate integration with graphics hardware 
and reduce the algorithm's bandwidth and computation 
requirements.  The key innovation is a novel variation of 
hierarchical z-buffering that requires only a small fraction 
of the bandwidth of the original algorithm to perform 
conservative culling. We add a separate culling stage to 
the pipeline that employs this algorithm to cull occluded 
geometry and passes visible and nearly visible image 
samples to rendering hardware.  Tile records within a z-
pyramid maintained by the culling stage include "znear" 
values, which usually enables image samples passed to 
the rendering stage to be identified as visible, in which 
case the z read that would normally be performed by stan-
dard z-buffering can be avoided.  

For deeply occluded scenes organized in bounding 
boxes, we enable efficient on-the-fly box culling on the 
host by providing the "tip" of the culler's z-pyramid, 
which requires only occasional low-bandwidth communi-
cation.  When we combine front-to-back traversal of 
bounding boxes, box culling on the host, and an optimized 
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culling stage, culling works automatically and effectively 
on virtually any polygonal scene. 

Our culling methods effectively reduce overall image 
traffic, which includes reads and writes of image and tex-
ture values in addition to z values.  This can enhance per-
formance substantially, since image bandwidth require-
ments are often the limiting bottleneck in today's z-buffer 
rendering systems [Mor00]. 

Perhaps the most fundamental goal of visibility re-
search is to make rendering work proportional to a scene’s 
visible complexity and independent of its overall com-
plexity [Cla76].  To use as a benchmark in pursuing this 
goal, we introduce the term oracle z-buffering, the z-buff-
ering performed by a perfect oracle that knows in advance 
which polygons are visible in the output image, and ren-
ders only them in front-to-back order.  As an indication of 
the effectiveness of our optimized culling algorithm, 
simulations reported in section 6 show that it often gen-
erates fewer z reads and writes than oracle z-buffering, 
even for pathologically complex scenes such as the 
Naked Empire skyscraper model [Gre96]. 

 
 

2  Related Work 
Our survey of work relating to occlusion culling will 

focus on methods that leverage z-buffer rendering 
hardware and consider their potential for real-time ren-
dering of arbitrary polygonal scenes.  For a general survey 
of occlusion-culling methods, see [CCS00]. 

One influential approach to occlusion culling, which 
was originally applied to architectural interiors 
[Air90,Tel92,Fun93]. is to precompute lists of visible 
geometry for volumetric cells.  Recently developed pro-
jection methods that exploit occluder fusion make this 
approach much more general [Dur00], as does a method 
for fusing volumetric occluders  [Sch00].  However, in 
addition to requiring extensive precomputation, this gen-
eral approach requires maintaining large, complex data 
structures, it does not exploit occlusion of or by dynamic 
objects, and since much more is typically visible from a 
viewing volume than from a single viewpoint, it usually 
culls only a fraction of occluded geometry in any particu-
lar frame.    

Another object-space method is to select foreground 
occluders and perform on-the-fly culling of geometry that 
they occlude [CT96,Hud97].  However, these methods do 
not effectively exploit occluder fusion, so good perform-
ance is limited to scenes having relatively simple visibility 
relationships.  

The hierarchical visibility algorithm [GKM93, Gre95] 
maintains the scene model in an octree and the z-buffer in 
an image pyramid (a z-pyramid).  A z-pyramid enables ef-
ficient hierarchical culling because it fully represents oc-
cluder fusion, but the polygon tiling required to maintain it 
cannot be done in real time in software.  If a scene is 
traversed strictly front-to-back, software polygon tiling 
can be accelerated with coverage masks [Gre96], but the 

order requirement impairs practicality.  Hierarchical visi-
bility has precursors in the work of Warnock [War69], 
Clark [Cla76], and Meagher [Mea82], and has since been 
extended by Sudarsky and Gotsman [SG99], who focus on 
processing dynamic scenes, Xie and Shantz [XS99], who 
present optimizations for hardware implementation in tiled 
architectures, and by Zhang and Manocha et al. 
[Zha97,Zha98].  Naylor also uses image-space and object-
space hierarchies to facilitate culling, projecting a scene 
represented with a 3D BSP tree into a 2D BSP tree repre-
senting the output image [Nay92], but this algorithm does 
not exploit occluder fusion, and as with [Gre96], it requires 
maintaining spatial hierarchies to enable traversal in depth 
order. 

While descriptions have not been formally published, 
some flight-simulation hardware has employed two-level 
occlusion-image hierarchies to facilitate culling [Mue95], 
and ATI's Radeon graphics chip performs hierarchical z-
buffering with a two-level z-pyramid [Mor00].  Although 
two-level hierarchies are an improvement over traditional 
rasterization, a full hierarchy culls large objects much more 
efficiently. 

Aila and Miettinen have implemented a variation of hi-
erarchical polygon tiling [Gre96] optimized for culling with 
silhouettes of foreground polyhedra that provides real-
time software culling in some cases [Am00], but only for a 
limited class of scenes. 

Zhang and Manocha et al. exploit z-buffer hardware by 
using it to render a “hierarchical occlusion map” of fore-
ground occluders, which is then used for culling during a 
rendering pass [Zha97,Zha98].  Although this method 
improves performance in some cases, rendering in two 
passes adds complexity, effectiveness depends on being 
able to select efficient foreground occluders, and existing 
implementations do not produce standard z-buffer images. 

To support culling of geometry contained in bounding 
boxes, some z-buffer accelerators report whether a portal 
or bounding box is visible [Tit93,Sco98].  A major problem 
with this approach is the delay between the time the host 
processor requests and receives box-visibility information, 
complicating scene management and impairing 
performance (for performance figures, see [KS01]). 

Model simplification (e.g. [Hop96]) and geometric 
compression (e.g. [Dee94]) are complementary strategies 
that can be used in combination with occlusion culling to 
reduce computation and bandwidth requirements.   

Some of the innovations discussed in this article were 
presented informally in [Gre99a] and [Gre99b]. 

 
  

3  The Proposed Optimized Culling 
Architecture  

Memory traffic in depth and color values is typically 
the bottleneck limiting the performance of today's z-buffer 
accelerators [Mon00].   Our culling architecture reduces  
this image traffic by including a separate culling stage in 
the pipeline that performs optimized hierarchical z-buffer-
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ing, a novel variation of hierarchical z-buffering [GKM93] 
that requires only a small fraction of the bandwidth and 
storage needed by the original algorithm to perform 
conservative culling.  These savings are made possible by 
a data structure called a zm-pyramid, which represents 
occlusion information about NxN-sample screen tiles as a 
coverage mask and two pairs of znear and zfar values.  
Maintaining the occlusion image in a pyramid enables ef-
ficient hierarchical culling of occluded geometry within the 
culling stage, and also on the host, if the "tip" of the zm-
pyramid is copied into host memory.  

Figure 1 shows the proposed architecture for opti-
mized culling, in which a host processor performs scene 
management and sends polygons to a transformation and 
set-up module, which in turn sends transformed polygons 
to a culling stage, which culls occluded geometry and 
passes visible and nearly visible image samples (or 
polygons) to a z-buffer rendering stage.   

Preferably, transformation, culling, and rendering are 
all part of an integrated hardware pipeline, in which case 
the culling stage sends records for image samples to the 
rendering stage, each identified as accepted, meaning 
known to be visible (so the rendering stage can avoid 
reading z), or ambiguous, meaning the sample may or may 
not be visible.  

Alternatively, if the culling stage is not integrated with 
the rendering pipeline (as would be the case, for example, 
if it were integrated with a memory controller that feeds a 
graphics card) it outputs polygon records, each tagged as 
accepted (meaning all samples on the polygon are visible) 
or ambiguous. 

 
 

4  Optimized Hierarchical Z-Buffering 
The culling stage employs optimized hierarchical z-

buffering (OHZ) to minimize the bandwidth requirements 
of conservative culling. OHZ uses a zm-pyramid, which is 

similar to a conventional z-pyramid [GKM93] that is 
missing its finest level.  For example, the skyscraper image 
of figure 8 has resolution 1024x1024, and the finest level in 
the corresponding zm-pyramid has resolution 256x256, as 
shown in figure 2. 

For each entry in the finest level of a zm-pyramid, we 
store a coverage mask, which defines two regions of a tile 
(unless the mask is null), and a znear and a zfar value for 
each of the regions.  A region's znear and zfar values are 
the nearest and farthest depth of any potentially visible 
sample on polygons processed thus far which overlap the 
region.  All other levels of the zm-pyramid are arrays of z 
values, as in a conventional z-pyramid. 

To reduce storage and bandwidth, all z values in the 
zm-pyramid are stored at low-precision, for example, in 8 or 
12 bits.  A zm-pyramid with 4x4 decimation and 12-bit z 
values requires approximately 3.75 bits per image sample, 
so storage requirements are approximately 1/6 of a 24-bit z-
buffer.  The A-buffer [Car84] also uses coverage masks to 
expedite processing within image tiles, but the data 
structure that we use is much more compact and spe-
cifically adapted for conservative culling. 

 
Tiling Procedure  

The OHZ tiling procedure is entirely analogous to 
conventional hierarchical z-buffering as described in 
[GKM93], except for the way that finest-level tiles are 
processed.  Refer to this article for a discussion of the 
original tiling algorithm.   

Briefly, hierarchical tiling of a polygon begins at the 
coarsest enclosing NxN tile in the zm-pyramid.  Within 
each tile, overlap and depth tests identify cells within 
which the polygon may be visible, which are recursively 
subdivided.  If subdivision reaches  a finest-level tile in 
the zm-pyramid, the tile's mask and z values establish the z 
range of previously rendered polygons at each image 
sample, enabling incoming samples to be classified as 

Figure 1    The proposed architecture for optimized culling.
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culled, ambiguous, or accepted, as will be discussed in 
more detail later. 

At the beginning of a frame we set a "virgin tile" flag in 
each finest-level tile of the zm-pyramid and clear the z 
values in all other levels of the pyramid to the far clipping 
plane.  A tile record's virgin tile flag in combination with 
the mask and zfar values always indicate which, if any, 
image samples are at this cleared z value, so it is not 
necessary to clear the z-buffer at the beginning of a frame, 
saving considerable bandwidth.  

 
Tiling Example  

The OHZ procedure for tiling a polygon is analogous 
to conventional hierarchical z-buffering [GKM93], except 
for the processing of finest-level tiles, which is illustrated 
in figure 3, where zfar_of_tile indicates the farthest visible 
z for the whole tile, a coverage mask  indicates samples 
that have been covered by one or more polygons since 
zfar_of_tile was established, and zfar_of_mask  is the far-
thest z value of these samples.  Znear_of_mask  is the 
nearest z value of the samples covered by the mask and 
znear_of_tile is the nearest z value of the samples not 
covered by the mask.  

Suppose that zfar_of_tile and znear_of_tile have been 
established before processing polygons P1 and P2 (e.g.,  
by polygon P0).  When P1 is encountered, the mask of 
visible samples that it covers (s1 and s2) is created (la-
beled mask), zfar_of_mask is set to the zfar value of these 
samples, and znear_of_mask  is set to the nearest z of the 
samples (since this is nearer than znear_of_tile).  Since 
sample s1 on P1 is in front of znear_of_tile, it is known to 
be visible with respect to the rendering stage's z-buffer, 
and is tagged accepted, which informs the rendering stage 
that there is no need to read the z-buffer.  Sample s2, 
however, is farther than znear_of_tile, so it may or may 
not be visible, and it is tagged as ambiguous, indicating 

that it will be necessary to read the z-buffer and make a 
depth comparison at this sample. 

Later, when polygon P2 is processed, since it covers 
the tile collectively with the stored mask , a new zfar value 
is established for the tile, which is written to zfar_of_tile 
(this is the old value for zfar_of_mask).  The tile’s mask  is 
set to P2’s mask  and zfar_of_mask  is set to P2’s zfar 
value.  Znear values are also updated, with znear_of_tile 
being set to the old value of znear_of_mask , and 
znear_of_mask  being set to the depth of the nearest sam-
ple on P2. 

In all, there are five cases that need to be considered 
when updating zfar values in tile records, which are dia-
grammed in figure 4, where dashed lines in the upper left 
diagram indicate whether the zfar value of the visible 
samples covered by the polygon is nearer or farther than 
zfar_of_mask  and whether the polygon’s visible samples 
cover the tile in combination with the stored mask .  The 
example of figure 3 corresponds to case C4. Although not 

Figure  3
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illustrated in figure 4, znear values also need to be 
updated using that rule that they must indicate the nearest 
depth encountered so far for the region of the screen 
corresponding to the mask, in the case of znear_of_mask , 
and the non-mask region, in the case of znear_of_tile. 

Despite its compact size compared with a z-buffer, a 
zm-pyramid culls efficiently, since the coverage mask and 
two zfar values stored in finest-level records encode con-
servative sample-by-sample depth values that usually 
closely approximate the real z-buffer values.  This enables 
effective culling, even within screen tiles where z values 
vary greatly, as may occur when a silhouette edge crosses 
a tile, or when a tile is covered by a finely tessellated ob-
ject.  The right panel of figure 2 shows sample-by-sample z 
values constructed from the zm-pyramid for figure 8.  

Typically, zm-pyramids cull most occluded samples  
(often, about 90%) and "accept" most visible samples (of-
ten, well over 90%).  In combination with avoiding z-buffer 
clears, this saves a great deal of memory traffic in z and 
color values, while reading and writing the zm-pyramid 
consumes only a small fraction of the savings.  Culling 
early in the pipeline also eliminates texture fetches for 
culled samples, providing additional bandwidth savings. 

Preferably, the culling stage maintains the zm-pyramid 
using depth information it generates while tiling primi-
tives, rather than by propagating z values from the z-
buffer, as with conventional hierarchical z-buffering 
[GKM93].  With this approach, the zm-pyramid is always  
up to date, 

 
Efficient Hardware Implementation of OHZ 

OHZ is well suited to hardware implementation be-
cause recursive subdivision can be implemented with a 
stack of tile records and the linear equations describing a 

polygon can be evaluated without general-purpose multi-
plication using the following novel hierarchical method, 
which is conceptually similar to Fuch’s method of evalu-
ating equations on a pixel grid [Fuc85]. 

As diagrammed in figure 5, within zm-pyramid tiles it is 
necessary to evaluate the polygon’s  edge equations 

(form: Aex + Bey + Ce), and depth equation,  z = Adx + 

Bdy + Cd.  In set-up computations, coefficients of the 
edge and depth equations are computed relative to the co-
ordinate frame (scaled as shown) of the smallest enclosing 
z-pyramid tile, which is where tiling begins.  When the tile 
is subdivided, the edge and depth equations are trans-
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Figure 5          

xÕ         

Edge Equation          
parent tile:  Aex + Bey + Ce  = 0         
child tile:     AexÕ + BeyÕ + CeÕ = 0         
where    CeÕ = N(Aext + Beyt + Ce)         

x         

Depth Equation          
parent tile:  z = Adx + Bdy + Cd         
child tile:    z = AdÕxÕ + BdÕyÕ + CdÕ          
where     AdÕ = Ad/N         
               BdÕ = Bd/N         
               CdÕ = Adxt + Bdyt + Cd         

Transformation Formulas          

8         

Formulas for hierarchical computation
of depth and edge equations.
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Schematic illustration of the five different cases for  
updating the mask and zfar values in a tile record.
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formed to the child tile’s coordinate frame using the for-
mulas stated in figure 5.  Since term Axt + Byt + C (where 
(xt,yt) is the origin of the child tile) has already been 
computed at the parent tile and N is a power of 2,  
evaluating these formulas requires only shifting and addi-
tion.  Note that it is necessary to evaluate each edge and 
depth equation at only one corner of each cell.  Depth 
equations are evaluated at the corner where the polygon’s 
plane is nearest, which corresponds to the quadrant of the 
screen projection of a backfacing normal to the polygon.  
Similarly, the “normal” to an edge indicates which corner 
of a cell should be substituted into the edge’s equation.  
This hierarchical evaluation method can also be applied to 
Gouraud interpolation and interpolation of texture coordi-
nates (and in fact, any polynomial equation in N dimen-
sions), and it is compatible with jitter if jittering is re-
stricted to samples on an “oversize” integer grid within a 
pixel, say a 32x32 grid. 

A hardware culling stage can substantially reduce tex-
ture bandwidth requirements if, for texture-mapped poly-
gons that are not culled, it computes a bit map indicating 
which rectangular tiles on a coarse grid registered with the 
texture map are “visible,” thereby indicating which texture 
values need to be made available to the renderer.  
Visibility is established by simply tiling the corresponding 
rectangle with OHZ. The same approach can be used to 
ignore regions of alpha-mapped polygons that are 
transparent, allowing culling of polygons that are only 
“visible” in transparent regions. 

 
 

5  Culling Bounding Boxes with the Z-Tip 
In deeply occluded scenes, traffic in occluded poly-

gons can be the bottleneck limiting overall performance.  
This problem can be overcome by organizing the scene in 
bounding boxes, and while traversing boxes front to back, 
culling occluded boxes and sending the polygons in visi-
ble boxes to be rendered [GKM93]. This procedure has 
ideal box-culling performance in the sense that only 
polygons contained in boxes that are actually visible in 
the output image are processed.  

 It is straightforward to achieve this with software 
rendering, but when rendering with graphics hardware, the 
host does not have fast access to an occlusion image.  Al-
though some z-buffer hardware supports box culling 
[Tit93,Sco98], there is a delay between when the proces-
sor issues a visibility query and when it receives a reply, 
and in the meantime, it is not known if the box’s contents 
need to be processed, making efficient scene management 
problematic.  For example, Klosowski and Silva [KS01] 
report that visibility queries take between .1 and 1 
milliseconds on an HP Kayak fx6 [Sco98].  Significant 
delays are fundamental because pipeline queues often 
contain numerous polygons, and if boxes wait their turn in 
queues, delays are long, and if queues are skipped over, 
culling efficiency is impaired.  Consequently, many 

hardware designers do not consider traditional hardware-
assisted box culling to be a very useful feature [Tar99]. 

Our approach to enabling the host to cull boxes on-
the-fly without incurring communication delays is for the 
culling stage to periodically copy the "tip" of the zm-
pyramid (a z-tip) into host memory with DMA.  This en-
ables the host to cull bounding boxes as they are encoun-
tered.  Simulations reported in the following section show 
that copying 3-level z-tips (i.e. the 4x4, 16x16, and 64x64 
levels) a dozen or two times a frame enables the host to 
cull a high fraction of boxes that are actually occluded, 
despite the fact that the z-tips are slightly out of date.  
Since z-tips require only a few kilobytes of storage, 
copying z-tips consumes little bandwidth.  In short, only 
coarse-grained, low-bandwidth, asynchronous 
communication is required to support this culling method.  

Note that whenever the farthest z value in the coars-
est level changes in a z-tip copied to the host, this ad-
vances the scene’s far clipping plane, and software that 
culls boxes to the view frustum [Cla76,GBW90] should 
exploit this. 

 
Frame-Coherent Box Culling 

One shortcoming of the box-culling method described 
above is that the host must work in unison with the 
graphics hardware on the current frame, which prevents it 
from queuing up geometry in order to even out its work-
load and obtain smoother animation.  In today's systems, 
the host commonly works a frame or more ahead of the 
hardware. 

This problem can be addressed with a method we call 
frame-coherent box culling, which uses z-tips in combina-
tion with the frame-coherence variation of the hierarchical 
visibility algorithm [GKM93].  This two-pass method 
permits the host to work ahead of graphics hardware most 
of the time.   

Suppose we'd like the host to work two or three 
frames ahead of the hardware.  To render frame F, in a first 
pass the host traverses the scene's bounding boxes in 
front-to-back order, and as each box is encountered, trans-
forms it to frame F-3's coordinate frame and determines 
whether it is visible with respect to frame F-3's z-tip, which 
was previously stored.  If so, the polygons contained in 
the box are added to the "pass-one geometry queue"  for 
frame F that will be rendered later.   When all boxes have 
been traversed,  the host is done with pass one, and it 
starts another task. 

The graphics hardware starts rendering frame F's 
pass-one geometry when it is done with the preceding 
frame, and when it finishes this rendering it copies the zm-
pyramid's z-tip into host memory and notifies the host that 
it is ready for pass two.  Typically, box visibility is highly 
coherent from frame to frame [GKM93], so the frame is 
nearly complete after rendering pass-one geometry,  and 
pass two requires relatively little time. 

During pass two, the host works in unison with the 
graphics hardware to complete frame F.  The host again 
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traverses frame F's bounding boxes in front-to-back order, 
skipping boxes that have already been processed, testing 
the remaining boxes for visibility against the current 
frame's z-tip, and sending the primitives in visible boxes to 
the hardware, thereby completing the frame. 

The advantage of frame-coherent box culling is that 
the only time that the host needs to work in unison with 
the graphics hardware is during pass two, which is typi-
cally a small fraction of the time.  Most of the time the host 
can be working one or more frames ahead, queuing up 
pass-one geometry. 

In unusual situations when frame coherence is low 
(for example, at a camera cut), a complementary approach 
can be used to enable the host to work ahead of the hard-
ware.  With this method we create a low-resolution 
(e.g.32x32) depth image for the frame that the host wants 
to start working on, using a highly simplified model of the 
scene's major occluders.  Then, the host uses this oc-
clusion image to determine boxes that are likely to be 
visible and adds the polygons they contain to the appro-
priate geometry  queue.  As with frame-coherent box cull-
ing, the scene is later completed in a second pass  in 
which the host works in unison with the hardware, using 
copied z-tips to cull occluded bounding boxes. 

 
 

6  Simulation Results  
Our discussion of culling performance will focus on 

image-bandwidth consumption, because traffic in depth 
and color values is commonly the bottleneck limiting the 
performance of today's z-buffer accelerators [Mon00].  We 
will compare the image bandwidth requirements of our 
optimized culling architecture, which we'll abbreviate op-
timized_culling, to those of standard z-buffering and also 
oracle z-buffering.  Comparison with oracle z-buffering 
offers a good indication of how close we come to optimal 
culling performance, although its bandwidth requirements 
are not a strict lower limit on those of actual systems, 
which may employ z compression, fast z clear, and other 
methods to reduce bandwidth [Mor00]. 

In order to characterize the image bandwidth require-
ments of z-buffering (both standard and hierarchical), we 
will use the term z-traffic to refer to the total number of z 
reads and writes that are generated in producing a frame, 
and the term z+color-traffic to refer to the sum of z-traffic 
and the total number of writes to the output image, in-
cluding the initial write at each sample to clear the image.  
The term average z-traffic will refer to the average number 
of z accesses per image sample in the output image, and 
average z+ color-traffic is defined analogously. 

We implemented a high-level software simulator pro-
grammed in C to measure the performance of opti-
mized_culling.  The culling stage performed optimized hi-
erarchical z-buffering into a zm-pyramid with 4x4 decima-
tion (as in figure 2), hierarchically culling occluded geome-
try and sending ambiguous and accepted samples to the 
rendering stage, where ordinary z-buffering was per-

formed, except that z reads were skipped for accepted 
samples.  The figures included here are for point-sampled 
1024x1024 images where image samples are pixel centers.  
The relative performance of optimized_culling is better 
when oversampling (which requires using a zm-pyramid 
having an additional level), since occlusion within finest-
level tiles is more coherent. 

For the simulated scenes we measured average z-
traffic and average z+color-traffic.  As summarized in 
Table 1, we compared these traffic figures for 
optimized_culling to that of oracle z-buffering and 
standard z-buffering.  For oracle z-buffering, figures for z-
traffic and z+color-traffic are those generated by front-to-
back z-buffering of just the polygons that are visible in the 
output image.  For standard z-buffering these figures 
apply to z-buffering all polygons in scene order.  For both 
oracle z-buffering and standard z-buffering we counted 
one z write and one color write per pixel for clearing. 

For optimized_culling, z-traffic is the sum of z-buffer 
reads and writes in the rendering stage plus zm-pyramid 
accesses in the culling stage (and z-tip reads by the host, 
when box culling), which consists of reads and writes of 
znear, zfar, and mask  values in tile records plus all reads 
and writes of z values at coarser levels of the pyramid 
when performing depth comparisons and propagating z 
values.  We counted one write per 4x4 tile for clearing the 
virgin tile flag, as explained in section 4.  Average 
z+color_traffic for optimized_culling is average z-traffic 
plus one write each time the image buffer is updated, in-
cluding one write for the initial clear. 

 
Winbench Computer Game  

To evaluate performance on typical computer-game 
scenes, we simulated optimized_culling performance on 
several  3D Winbench 2000 scenes, including a frame from 
the Canyon sequence (figure 6).  As listed in Table 1, 
Canyon has 11,025 front-facing polygons (excluding text 
billboards, which we omitted), their average depth is 2.55, 
and the average depth of polygons that are actually 
visible in the output image (panel b) is 1.46.  Image 
resolution was 1024x768 and we used 8-bit z values in the 
zm-pyramid.  

Figure 6c shows pixel-by-pixel z-buffer traffic (the sum 
of reads and writes), which averaged 1.11 per pixel.  Z-
buffer traffic is 1 at 91% of pixels (blue region), indicating 
that the first polygon processed at a pixel was accepted 
(generating a z write but no read), and all other polygons 
arriving at that pixel were culled, indicating that culling 
performed by the zm-pyramid was ideal at these pixels.  Of 
pixels sent to the renderer, 97% were accepted and 3% 
where ambiguous, indicating that z-buffer reads needed to 
be performed only 3% of the time.  In other words, the zm-
pyramid definitively established visibility at 97% of sam-
ples, despite its compact size, approximately 1/8 of the z-
buffer in this simulation.  Within the culling stage, ac-
cesses to the zm-pyramid averaged .58 per pixel when 
amortized over the corresponding screen area.  Total aver-
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age z-traffic for optimized_culling was 1.69, which is 49% 
of the figure for oracle z-buffering and 37% of the figure 
for standard z-buffering.  As this comparison shows, z-
traffic was reduced to half of that which would have been 
generated if we knew in advance which polygons were 
visible and rendered only them in front-to-back order with 
standard z-buffering.  z+color-traffic for opti-
mized_culling was 69% of the figure for oracle z-buffering 
and 56% of the figure for standard z-buffering. 

One reason that optimized_culling's z-traffic is so low 
is that the polygons in this test happen to be stored in 
roughly front-to-back order.  To quantify the impact of 
traversal order, we reversed the order of the polygons and 
found that average z-traffic rose to 3.58, or 103% of oracle 
z-buffering and 64% of standard z-buffering.  Figure 6d 
shows pixel-by-pixel z-buffer traffic for optimized_culling, 
which averaged 2.53.  Even when traversal order is 
unfavorable, as it was in this simulation, opti-
mized_culling generally performs much better than stan-
dard z-buffering because most pixels are accepted (77% in 
this example), thereby avoiding z reads required by stan-
dard z-buffering. 

Overall, our tests on this and other computer-game 
traces showed that optimized_culling reduced z-traffic ef-
fectively, often well below that of oracle z-buffering. This 
often occurred even with traces that had already benefited 
from portals culling within a game application, because 
numerous occluded polygons remained.  In the games that 
we tested, mo st translucent polygons wrote z values, so 
they did not impair culling efficiency, and clipping plane 
values permitted good culling efficiency with 8-bit z val-
ues in the zm-pyramid. 

 
An Architectural Interior 

To measure optimized_culling's performance on 
highly tessellated models, we rendered the Lightscape In-
terior of figure 7 (1024x768), which has 173,000 polygons 
and an average depth of 1.98.  89% of samples were ac-
cepted and z-buffer traffic was one at 73% of image sam-

ples, those shown in blue in figure 7d.  Thus, the zm-
pyramid efficiently culled and accepted samples, despite 
the extreme tessellation.  If the culling stage were operat-
ing in "polygon culling" mode it would have culled 65% of 
polygons, the ones outlined in black in panel c.  (The 
corresponding figures for the forward and reverse Canyon 
simulations are 84% and 58%.)  Overall z-traffic for op-
timized_culling was 103% of oracle z-buffering and 72% 
of standard z-buffering.  The corresponding figures for a 
reverse-order Lightscape simulation were 98% of oracle z-
buffering and 64% of standard z-buffering. 
 
Skyscraper Model 

To test optimized_culling's performance on deeply oc-
cluded scenes organized in bounding boxes, we animated 
the skyscraper model of figure 8 (1024x1024) using the mo-
tion parameters of the Naked Empire animation [Gre96].  
In this simplified variation of the publicly available model, 
each cubic bounding box contains two office modules 
having a total of 316 rectangles, organized for backface 
culling.  These boxes were organized in an octree, but 
within each box there was no further organization into 
smaller boxes.  Polygons were stored in no particular order 
within each box, and to prevent polygon order from 
distorting culling measurements, we reversed the order 
that polygons were traversed every other time a box was 
processed.  The culling stage tiled polygons one-by-one 
into the zm-pyramid without exploiting the fact that some 
abutting polygons form larger polygons.  

Average scene depth is 23.4, average depth of visible 
polygons is 1.86, and 988,000 polygons (including back-
facing ones) in 3126 bounding boxes lie inside the view 
frustum.  As is apparent in figure 9, it is possible to see 
completely through the model in places. 

We tested the novel variations of the hierarchical visi-
bility algorithm [GKM93] described in section 5, which 
traverse the octree front to back, use z-tips to cull oc-
cluded boxes, and render the polygons in visible boxes.  
First we simulated conditions when the host and graphics 
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hardware work in unison.  While the host traversed the 
scene's boxes front-to-back and sent polygons in visible 
boxes to be rendered, the culling stage periodically copied 
a 3-level z-tip (the 4x4, 16x16, and 64x64 levels of the zm-
pyramid) into host memory, which was done 16 times in 
the course of rendering figure 8.  Total average z-traffic 
was 3.58 (2.53 in the z-buffer, 1.05 in the zm-pyramid and z-
tip), which was 109% of the figure for oracle z-buffering. 

Next we simulated frame-coherent box culling, begin-
ning figure 8 by rendering the polygons in bounding 
boxes that were visible three frames back (frame "F-3").  
To do this, the host traversed the octree in front-to-back 
order, culled occluded boxes with frame F-3's z-tip (which 
had been previously stored in host memory), and sent the 
polygons in visible boxes to be rendered.  Frame F-3's z-tip 
is shown magnified in the left-hand panel of figure 2 and 
at actual scale at upper left in figure 8.  Then, in a second 
front-to-back traversal of the octree, the host used z-tips 
of the current frame (copied by the culler into host 
memory) to identify the visible boxes that remained to be 
rendered.  In this particular frame, the first pass produced 
a nearly complete image, with only 404 pixels overwritten 
in the second pass.  This indicates that most of work the 
host has to do was on the first pass, and this work can be 
queued up two frames ahead of the current frame, since 
frame's F-3's final z-tip is available then.  Figure 11 is pixel-
by-pixel z-buffer traffic for this simulation, wherein z-buffer 
traffic is one at 25% of covered pixels and two at 28% of 
covered pixels, indicating that no z reads were performed 
at 53% of pixels.  Total average z-traffic was 3.12 (1.74 in 
the z-buffer,1.38 in the zm-pyramid and z-tip), which was 
81% of the figure for oracle z-buffering.  Average z+color-
traffic for optimized_culling was nearly the same as the 
figure for oracle z-buffering.  Thus, even for this very 
complex and deeply occluded scene, optimized_culling 
reduced image memory traffic as effectively as knowing in 
advance which polygons would be visible and rendering 
only them. 

Since this scene has high frame coherence, there is no 
need to use the complementary method of identifying 
boxes that are likely to be visible by rendering a low-
resolution image of major occluders and performing box-
visibility tests using this image's z-tip, as discussed in 
section 5.  But to illustrate the method, we rendered a 
simple polyhedral model of the skyscraper at 64x64 (lower 
half of figure 12) and used its depth image (upper half of 
image 12) to test boxes for visibility, which identified the 
frontmost parts of the skyscraper as visible.  In general, 
this method enables the host to identify geometry that is 
likely to be visible in any frame for which the camera 
transformation is known (or can be approximated), 
allowing it to work ahead of graphics hardware and queue 
up geometry to be rendered. 
 
"Topiary Tower" 

Given bounding boxes and favorable traversal order, 
optimized_culling can efficiently cull virtually any po-

lygonal model, because a zm-pyramid represents nearly all 
of the occluder fusion of previously processed polygons.  
To illustrate that efficiency does not depend on construc-
tion from abutting polygons, as occurs in the skyscraper 
model, we constructed 
Topiary Tower (figure 13) by stacking topiary balls within 
the skyscraper framework, one of which is shown sliced in 
half.  Even though individual balls make poor occluders, 
collectively they occlude very effectively when culling 
with a zm-pyramid.  For figure 13, z-traffic generated by 
optimized_culling was approximately 150% of the figure 
for oracle z-buffering. 

Note that for this model is highly problematic for 
methods that precompute visibility for regions of space, 
even those that are able to fuse occluders [Dur00], 
because a great deal more is visible from reasonably-sized 
view volumes than from a single viewpoint, due to the 
multitude of pinhole lines of sight.  Although this is a con-
trived example, real-world scenes such as jungle canopies 
have similar occlusion relationships. 
 
Discussion 

This article is intended to explore the theoretical per-
formance of our optimized culling algorithm.  Clearly, we 
do not provide a full discussion of practical implemen-
tation issues or predict relative performance compared 
with actual systems.  For one thing, our z-traffic com-
parisons with standard z-buffering don't account for exist-
ing methods for reducing bandwidth, such as fast clear 
and z compression [Mor00].  Also, we assume that values 
in the zm-pyramid can be accessed individually, even 
though actual systems often perform tile-based memory 
accesses.  Regarding box culling, our methods assume 
that scenes are organized in boxes which can be easily 
reordered without affecting the output image, even 
though support for this is largely absent in today's 
application programs.  Further, our approach doesn't 
provide a way of anticipating geometry that will be coming 
into view, as precomputed visibility methods do [Tel92].  
Despite these limitations, we hope that our analysis of 
theoretical performance offers incites into practical 
applications. 
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8  Conclusion 

Within z-buffer systems, memory traffic in image val-
ues can be dramatically reduced by including an optimized 
conservative culling stage in the graphics pipeline that 
employs a zm-pyramid and simple polygon-tiling opera-
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tions to cull occluded geometry and identify image sam-
ples that are actually visible.  Commonly, optimized culling 
reduces image memory traffic more effectively than 
knowing in advance which polygons are visible in the 
output image, and rendering only them with standard z-
buffering.  In some cases, this even applies to rendering 
deeply occluded scenes of great visible complexity, pro-
vided that they are organized in bounding boxes and trav-
ersed in approximately front-to-back order.  These charac-
teristics indicate that integrating optimized culling proce-
dures into hardware pipelines could go a long way 
towards enabling real-time animation of complex arbitrary 
scenes.  
 
 
 
 
 



11 

 

References 
 
[Air90] J. Airey, “Increasing Update Rates in the Building 
Walkthrough System with Automatic Model-Space Subdivision 
and Potentially Visible Set Calculations,” PhD Thesis, Technical 
Report TR90-027, Computer Science Dept., UNC Chapel Hill, 
1990. 
[AM00] T. Aila and V. Miettinen, “Umbra Reference Man-
ual," Hybrid Holding, Ltd., Helsinki, Finland, Oct. 2000. 
[Car84] L. Carpenter, “The A-Buffer, an Antialiased Hidden 
Surface Method,” Proc. of SIGGRAPH '84, July 1984, 103-108. 
[CCS00] D. Cohen-Or, Y. Chrysanthou, and C. Silva, "A 
Survey of Visibility for Walkthrough Applications," Siggraph 
2000 Course Notes: Visibility, Problems, Techniques, and 
Applications, July, 2000. 
[Cla76] J. H. Clark, “Hierarchical Geometric Models for 
Visible Surface Algorithms,” Communications of the ACM 
19(10), Oct. 1976, 547-554. 
[CT96] S. Coorg and S. Teller, “Temporally Coherent 
Conservative Visibility,” Proc. Of 12th ACM Symposium on 
Computational Geometry, 1996.. 
[Dee94] M. Deering, S. Schlapp, and M. Lavelle, “FBRAM: 
A new Form of Memory Optimized for 3D Graphics,” Proc. of 
SIGGRAPH '94, July 1994, 167-174. 
[Dur00] F. Durand, G. Drettakis, J. Thollot, and C. Puech, 
“Conservative Visibility Preprocessing using Extended Pro-
jections,” Proc. of SIGGRAPH '00, July 2000, 239-248. 
[Fuc85] H. Fuchs, J. Goldfeather, J. Hulquist, S. Spach, J. 
Austin, F. Brooks, Jr., J. Eyles, and J. Poulton, “Fast Spheres, 
Shadows, Textures, Transparencies, and Image Enhancements in 
Pixel-Planes,” Proc. of SIGGRAPH '85, July 1985, 111-120. 
[Fun93] T. Funkhouser and C. Sequin, “Adaptive Display 
Algorithm for Interactive Frame Rates During Visualization of 
Complex Virtual Environments,” Proc. of SIGGRAPH '93, Aug. 
1993, 247-254. 
[GBW90] B. Garlick, D. Baum, and J. Winget, “Interactive 
Viewing of Large Geometric Databases Using Multiprocessor 
Graphics Workstations,” Siggraph ’90 Course Notes: Parallel 
Algorithms and Architectures for 3D Image Generation, 1990. 
[GKM93] N. Greene, M. Kass, and G. Miller, “Hierarchical 
Z-Buffer Visibility,'' Proc. of SIGGRAPH '93, July 1993, 231-
238. 
[Gre95] N. Greene, “Hierarchical Rendering of Complex 
Environments,” PhD Thesis, Univ. of California at Santa Cruz, 
Report  UCSC CRL-95-27, June 1995. 
[Gre96] N. Greene, “Hierarchical Polygon Tiling with 
Coverage Masks,” Proc. of SIGGRAPH '96, Aug 1996. 
[Gre99a] N. Greene, “Occlusion Culling with Optimized 
Hierarchical Z-Buffering,"  Siggraph Technical Sketch, Siggraph 
'99 Conference Abstracts and Applications, Aug. 1999. 
[Gre99b] N. Greene, “Optimized Hierarchical Occlusion 
Culling for Z-Buffering Systems, Siggraph '99 Conference 
Abstracts and Applications (CD-ROM only), Aug. 1999. 

[Hop96] H. Hoppe, “Progressive Meshes,” Proc. of 
SIGGRAPH '96, Aug 1996, 99-108. 
[Hud97] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. 
Hoff, and H. Zhang, “Accelerated Occlusion Culling Using 
Shadow Frusta,” Proc. Of ACM Symposium on Computational 
Geometry, 1997. 
[KS01] J. Klosowski and C. Silva, "Efficient Conservative 
Visibility Culling Using the Prioritized-Layered Projection 
Algorithm, IEEE Transactions on Visualization and Computer 
Graphics, to appear. 
[LG95]  D. Luebke and C. Georges, “Portals and Mirrors: 
Simple, Fast Evaluation of Potentially Visible Sets,” ACM 
Interactive 3D Graphics Conference, 1995. 
[Mor00] S. Morein, "ATI Radeon HyperZ Technology" 
(slides outline only), Graphics Hardware 2000, Hot3D Pro-
ceedings, Aug. 2000. 
[Mea82] D. Meagher, “The Octree Encoding Method for Ef-
ficient Solid Modeling,” PhD Thesis, Electrical Engineering 
Dept., Rensselaer Polytechnic Institute, Troy, New York, Aug. 
1982. 
[Mue95] C. Mueller, "Architectures of Image Generators for 
Flight Simulators," Tech. Report TR95-015, Dept. of Computer 
Science, Univ. of North Carolina, Chapel Hill, 1995. 
[Nay92] B. Naylor, “Partitioning Tree Image Representation 
and Generation from 3D Geometric Models,” Proc. of Graphics 
Interface, 1992. 
[Sch00] G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion, 
“Conservative Volumetric Visibility with Occluder Fusion,” 
Proc. of SIGGRAPH '00, July 2000, 229-238.  
[Sco98] N. Scott, D. Olsen, and E. Gannett,. “An Overview 
of the VISUALIZE fx Graphics Accelerator Hardware,” The 
Hewlett-Packard Journal, 49(2), May 1998, 28-34. 
[SG99] O. Sudarsky and C. Gotsman, “Dynamic Scene Oc-
clusion Culling,” IEEE Transactions on Visualization and 
Computer Graphics, 5(1), Jan. 1999. 
[Tar99]  Gary Tarolli, personal communication, 1999. 
[Tel92] S. Teller, “Visibility Computations in Densely 
Occluded Polyhedral Environments,” PhD Thesis, Univ. of 
California at Berkeley, Report UCB/CSD 92/708, Oct. 1992. 
[Tit93] “Denali Technical Overview,” Kubota Pacific 
Computer, Jan 1993. 
[War69] J. Warnock, “A Hidden Surface Algorithm for 
Computer Generated Halftone Pictures,” PhD Thesis, TR 4-15, 
Computer Science Dept., Univ. of Utah, June 1969. 
[XS99] F. Xie and M. Shantz, “Adaptive Hierarchical 
Visibility in a Tiled Architecture,” Proc. Eurographics/Siggraph 
Workshop on Graphics Hardware, Aug. 1999, 75-84. 
[Zha97] H. Zhang, D. Manocha, T. Hudson, and K. Hoff, 
“Visibility Culling Using Hierarchical Occlusion Maps,” Proc. of 
SIGGRAPH '97, Aug. 1997, 77-88. 
[Zha98] H. Zhang, “Effective Occlusion Culling for the In-
teractive Display of Arbitrary Models,” PhD Thesis, Computer 
Science Dept., UNC Chapel Hill, 1998.  
 

 





�

)URP�UHJLRQ�9LVLELOLW\�
�VHFRQG�SDUW��

9ODGOHQ�.ROWXQ
7HO�$YLY�8QLYHUVLW\

6,**5$3+�����

9LVLELOLW\�3UHSURFHVVLQJ�XVLQJ�
([WHQGHG�3URMHFWLRQV

)UHGR�'XUDQG�HW�DO��
6,**5$3+·����



�

6,**5$3+�����

([WHQGHG�SURMHFWLRQV
� 3URMHFWLRQ�IURP�D�SRLQW�YROXPH
� 2YHUODS�DQG�GHSWK�WHVWV
� LPDJH�VSDFH�LQFOXVLRQ�LPSOLHV
�REMHFW�VSDFH�RFFOXVLRQ

REMHFW

2FFOXGHU

FHOO

6,**5$3+�����

([WHQGHG�SURMHFWLRQV

&RQVHUYDWLYH
² LQWHUVHFWLRQ�IRU�WKH�RFFOXGHUV
² XQLRQ�IRU�WKH�REMHFWV

REMHFW

FHOO

2FFOXGHU



�

6,**5$3+�����

2FFOXGHU�IXVLRQ

� 3URMHFWLRQ�RI�WKH�
WZR�RFFOXGHUV

� $JJUHJDWLRQ�LQ�D�ELWPDS

REMHFW

%

FHOO

$

6,**5$3+�����

3UREOHP�RI�WKH�FKRLFH�RI�WKH�SODQH

7KH�LQWHUVHFWLRQV
RI�WKH�YLHZV�LV�QXOO

RFFOXGHU

FHOO



�

6,**5$3+�����

7KH�FKRLFH�RI�WKH�SODQH

� &RQWUDGLFWRU\�FRQVWUDLQWV

JURXS��

FHOO

JURXS��

6,**5$3+�����

5H�SURMHFWLRQ
� 5H�SURMHFW�WKH�LQIRUPDWLRQ�RI�SODQH���RQWR�
SODQH���



�

6,**5$3+�����

2FFOXVLRQ�VZHHS

3URMHFWLRQ�DQG�5H�SURMHFWLRQ
WR�DJJUHJDWH�WKH�RFFOXVLRQV

6,**5$3+�����

7KH�DOJRULWKP

� ,GHQWLI\�RFFOXGHUV
� 3ODFH�SURMHFWLRQ�SODQHV
� 3URMHFW�DOO�RFFOXGHUV�RQWR�WKH�
SURMHFWLRQ�SODQHV��DQG�FRQVWUXFW�+20V

� )RU�HDFK�RFFOXGHH��SURMHFW�LW�RQWR�WKH�
FORVHVW�SURMHFWLRQ�SODQH��DQG�WHVW�
ZKHWKHU�RFFOXGHG



�

6,**5$3+�����

9ROXPHWULF�9LVLELOLW\�ZLWK�
2FFOXGHU�)XVLRQ

*HUQRW�6FKDXIOHU�HW�DO���
6,**5$3+·����

6,**5$3+�����

6FHQH�'LVFUHWLVDWLRQ
)URP�SRO\JRQDO�UHSUHVHQWDWLRQ�
WR�D�YROXPHWULF�UHSUHVHQWDWLRQ



�

6,**5$3+�����

9R[HO�&ODVVLILFDWLRQ

² &ODVVLI\�YR[HOV�WKDW�DUH�RFFOXGHG�E\�
RSDTXH�YR[HOV�DV�RSDTXH�

² &RQFHSWXDOO\�HTXLYDOHQW�WR�VWURQJ�RFFOXVLRQ

6,**5$3+�����

%ORFNHU�H[WHQVLRQ
² $GMDFHQW�RSDTXH�YR[HOV�DUH�PHUJHG�LQWR�
ODUJHU�EORFNHUV�WR�\LHOG�ODUJHU�RFFOXVLRQ

2FFOXVLRQ�RI�D
VLQJOH�YR[HO

2FFOXVLRQ�RI�D�
FRPELQHG�RFFOXGHUV



�

6,**5$3+�����

([WHQG�EORFNHUV�LQWR�KLGGHQ�
UHJLRQV��LWHUDWLYHO\�

6,**5$3+�����

5HVXOWV

:LWKRXW�EORFNHU�H[WHQVLRQ�
�VWURQJ�RFFOXVLRQ�RQO\�

:LWK�EORFNHU�H[WHQVLRQ



�

6,**5$3+�����

2FFOXGHU�)XVLRQ�E\�2FFOXGHU�
6KULQNLQJ�DQG�3RLQW�6DPSOLQJ

3HWHU�:RQND�HW�DO���

(*5:·����

6,**5$3+�����

9LHZ�
FHOO

2FFOXGHU

6LQJOH�2FFOXGHU�XPEUD

)XVHG�XPEUD



��

6,**5$3+�����

&RQVHUYDWLYH
XPEUD�IRU�
H�QHLJKERUKRRG

6DPSOH�SRLQW

2FFOXGHU

6KULQN�WKH�RFFOXGHU�E\�H�DQG�FRPSXWH�LWV
�RFFOXVLRQ�IURP�D�SRLQW�3��LQ�UHG���WKHQ�WKH
RFFOXVLRQ�LV�YDOLG�IRU�DQ�H�UHJLRQ�DURXQG�3�

H�

H�

H�
H�

6,**5$3+�����

9LHZ�
FHOO

2FFOXGHU

6LQJOH�2FFOXGHU�XPEUD

)XVHG�XPEUD

$SSO\�RFFOXVLRQ�FXOOLQJ
IURP�D�VHW�RI�SRLQWV



��

6,**5$3+�����

,I�ZH�VKULQN�WKH�
RFFOXGHUV�E\�H�WKHQ�
WKH�DJJUHJDWH�XPEUD�
LV�VPDOO����VHH�WKH�
\HOORZ�VLJKW�UD\�

�

�

�

6,**5$3+�����

+DUGZDUH�$FFHOHUDWHG�IURP�
5HJLRQ�9LVLELOLW\�XVLQJ�D�'XDO�

5D\�6SDFH

9ODGOHQ�.ROWXQ
'DQLHO�&RKHQ�2U

<LRUJRV�&KU\VDQWKRX��8&/�



��

6,**5$3+�����

2YHUYLHZ�RI�WKH�QHZ�PHWKRG
� 3ODFH�WKH�VFHQH�LQ�
DQ�D[LV�DOLJQHG�
SDUWLWLRQLQJ�
WUHH��NG�WUHH�

� 6HOHFW�D�UHJLRQ�RI�LQWHUHVW�
�YLHZFHOO�

� 7UDYHUVH�WKH�NG�WUHH�
KLHUDUFKLFDOO\�WRS�GRZQ�

� $W�HDFK�VWHS�GHFLGH�LI�
QRGH�LV�YLVLEOH

6,**5$3+�����

'HWHUPLQH�9LVLELOLW\�%HWZHHQ�
7ZR�%R[HV
� 4��JLYHQ�WZR�D[LV�
DOLJQHG�ER[HV��$��%��
DQG�D�VHW�RI�
RFFOXGLQJ�REMHFWV�
�6���DUH�$�DQG�%�
PXWXDOO\�YLVLEOH"

$

%

2FFOXGHUV



��

6,**5$3+�����

5HGXFWLRQ�WR�D�3ODQDU�3UREOHP

� $VVXPSWLRQ��$OO�
RFFOXGHUV�DUH�[\�
PRQRWRQLF

� 2EVHUYDWLRQ��$�DQG�
%�DUH�PXWXDOO\�
YLVLEOH�LI�DQG�RQO\�LI�
WKHLU�XSSHU�ULPV�DUH�
YLVLEOH

8SSHU�ULPV

6,**5$3+�����

5HGXFWLRQ�WR�D�3ODQDU�3UREOHP

$ %

7

$

%

/

5

$I %I

7RS�YLHZ 6LGH�YLHZ

9LVLELOLW\�EHWZHHQ�$�DQG�%�LV�HTXLYDOHQW�WR�
YLVLELOLW\�LQVLGH�WKH�SODQH�7



��

6,**5$3+�����

3ODQDU�9LVLELOLW\�7HVW
� 4�JLYHQ�WZR�HGJHV��V��
DQG�V���LQ�WKH�SODQH�DQG�
D�VHW�RI�RFFOXGHU�HGJHV�
2��DUH�WKH�HGJHV�
PXWXDOO\�YLVLEOH"

� /LQHDU�VHSDUDWLRQ��2�Q���
RQ�WKH�QXPEHU�RI�
RFFOXGHU�HGJHV

6,**5$3+�����

7KH�'XDO�5D\�6SDFH

6�

6�

�� 5D\�6SDFH

6�

6�

���

�

�
�

��

�

5D\�
LQ���

3RLQW�LQ
5D\�6SDFH



��

6,**5$3+�����

6�

6�

�� 5D\�6SDFH

6�

6�

���

�

�
�

��

�

7KH�'XDO�5D\�6SDFH

6,**5$3+�����

6�

6�

�� 5D\�6SDFH

6�

6�

���

�

�
�

��

�

7KH�'XDO�5D\�6SDFH



��

6,**5$3+�����

6�

6�

�� 5D\�6SDFH

6�

6�

���

�

�
�

��

�

7KH�'XDO�5D\�6SDFH

6,**5$3+�����

+DUGZDUH�$FFHOHUDWHG
� 5HQGHU�DOO�WKH�WUDSH]HV�DQG�GRXEOH�WULDQJOHV��WKH�

VHJPHQWV�LQ�WKH�GXDO�VSDFH�
� &KHFN�ZKHWKHU�WKH�IUDPH�EXIIHU�LV�IXOO\�FRYHUHG

2FFOXGHG 9LVLEOH



��

6,**5$3+�����

5HVXOWV

� 9LVLELOLW\�IRU�D����[����
YLHZFHOO�LV�FRPSXWHG�LQ�
����VHFRQGV�RQ�DYHUDJH

� ,W�WDNHV����VHFRQGV�WR�
ZDON�����PHWHUV�ZLWK�D�
VSHHG�RI���NP�K

� ,W�FDQ�EH�HPSOR\HG�RQ�
OLQH��ZLWKRXW�
SUHSURFHVVLQJ�

6,**5$3+�����

'HPR

�'�RYHUYLHZ �'�YLHZ



��

6,**5$3+�����

[\�PRQRWRQH�RFFOXGHUV

� &RPPHUFLDO�9LUWXDO�(QYLURQPHQWV�
XVXDOO\�PRGHO�UHDOLVWLF�VFHQHV��H�J��
XUEDQ�DQG�DUFKLWHFWXUDO�HQYLURQPHQWV

� [\�PRQRWRQH�RFFOXGHUV�FDQ�EH�
V\QWKHVL]HG��H�J��E\�WHFKQLTXHV�VLPLODU�
WR�>$QGXMDU�HW�DO���&$'�����@�

� 2XU�DSSURDFK�LV�QRW�DV�UHVWULFWLYH�DV�
DVVXPLQJ�[\�PRQRWRQLFLW\�RI�WKH�ZKROH�
VFHQH�

6,**5$3+�����

(QVXULQJ�FRQVHUYDWLYLW\

� 6KULQNLQJ�LV�HPSOR\HG�WR�HQVXUH�WKDW�RQO\�
SL[HOV�WKDW�DUH�IXOO\�FRYHUHG�DUH�FRORUHG

� 7KH�HGJHV�DUH�PRYHG�LQZDUG�E\�������D��
ZKHUH�D�LV�WKH�SL[HO�VL]H



��

6,**5$3+�����

5HVXOWV

� 9LVLELOLW\�IRU�D����[����YLHZFHOO�LV�
FRPSXWHG�LQ�����VHFRQGV�RQ�DYHUDJH

� ,W�WDNHV����VHFRQGV�WR�ZDON�����PHWHUV�
ZLWK�D�VSHHG�RI���NP�K

� )URP�UHJLRQ�YLVLELOLW\�FDQ�EH�HPSOR\HG�
RQ�OLQH��ZLWKRXW�SUHSURFHVVLQJ�

6,**5$3+�����

2Q�OLQH�IURP�UHJLRQ�YLVLELOLW\

� 1R�OHQJWK\�SUHSURFHVVLQJ
� 1R�HQRUPRXV�SUHSURFHVVLQJ�UHVXOWV
� 1R�XQQHFHVVDU\�QHWZRUN�ODJ
� 5HDO�WLPH�IUDPH�UDWHV



��

6,**5$3+�����

7KDQN�\RX



Virtual Occluders: An Efficient Intermediate
PVS representation

Vladlen Koltun Yiorgos Chrysanthou Daniel Cohen-Or
Tel Aviv University University College London Tel Aviv University

Fig. 1. A virtual occluder (the red and white rectangle) represents aggregate occlusion from a
region.

Abstract. In this paper we introduce the notion of virtual occluders. Given
a scene and a viewcell, a virtual occluder is a view-dependent (simple) convex
object, which is guaranteed to be fully occluded from any given point within the
viewcell and which serves as an effective occluder from the given viewcell. Vir-
tual occluders are a compact intermediate representation of the aggregate occlu-
sion for a given cell. The introduction of such view-dependent virtual occluders
enables applying an effective region-to-region or cell-to-cell culling technique
and efficiently computing a potential visibility set (PVS) from a region/cell. We
present a technique that synthesizes such virtual occluders by aggregating the vis-
ibility of a set of individual occluders and we show the technique’s effectiveness.

1 Introduction

Visibility algorithms have recently regained attention in computer graphics as a tool to
handle large and complex scenes, which consist of millions of polygons. Twenty years
ago hidden surface removal (HSR) algorithms were developed to solve the fundamental
problem of determining the visible portions of the polygons in the image. Today, since
the z-buffer hardware is the de-facto standard HSR technique, the focus is on visibility
culling algorithms that quickly reject those parts of the scene which do not contribute
to the final image.

Conventional graphics pipelines include two simple visibility culling techniques:
view-frustum culling and backface culling. These visibility techniques are local in the
sense that they are applied to each polygon independently of the other polygons in the
scene. Occlusion culling is another visibility technique in which a polygon is culled if



it is fully occluded by some other part of the scene. This technique is global and thus
far more complex than the above local techniques.

Apparently, occlusion culling techniques and hidden surface removal techniques
are conceptually alike and have a similar asymptotic complexity. However, to apply an
occlusion culling technique as a quick rejection process, it must be significantly more
efficient than the hidden surface removal process. The answer is the use of conservative
methods in which for a given scene and view point the conservative occlusion culling
algorithm determines a superset of the visible set of polygons [3, 15, 9]. These methods
yield a potential visibility set (PVS) which includes all the visible polygons, plus a
small number of occluded polygons. Then the HSR processes the (hopefully small)
excess of polygons included in the PVS. Conservative occlusion culling techniques have
the potential to be significantly more efficient than the HSR algorithms. It should be
emphasized that the conservative culling algorithm can also be integrated into the HSR
algorithm, aiming towards an output sensitive algorithm [14, 23]. A good overview of
most recent culling techniques can be found in [17].

To reduce the computational cost, the conservative occlusion culling algorithms
usually use a hierarchical data structure where the scene is traversed top-down and
tested for occlusion against a small number of selected occluders [9, 15]. In these
algorithms the selection of the candidate occluders is done before the online visibility
calculations. The efficiency of these methods is directly dependent on the number of
occluders and their effectiveness. Since the occlusion is tested from a point, these
algorithms are applied in each frame during the interactive walkthrough.

A more promising strategy is to find the PVS from a region or viewcell, rather
than from a point. The computation cost of the PVS from a viewcell would then be
amortized over all the frames generated from the given viewcell. Effective methods
have been developed for indoor scenes [2, 20, 12, 1], but for general arbitrary scenes,
the computation of the visibility set from a region is more involved than from a point.
Sampling the visibility from a number of view points within the region [13] yields an
approximated PVS, which may then cause unacceptable flickering temporal artifacts
during the walkthrough. Conservative methods were introduced in [7, 18] which are
based on the occlusion of individual large convex objects. In these methods a given
object or collection of objects is culled away if and only if they are fully occluded by
a single convex occluder. It was shown that a convex occluder is effective only if it is
larger than the viewcell [7]. However, this condition is rarely met in real applications.
For example the objects in Figure 2 are smaller than the viewcell, and their umbra
(with respect to the viewcell) are rather small. Their union does not occlude a signifi-
cant portion of the scene (see in (a)), while their aggregate umbra is large (see in (b)).
Recently, new conservative methods are emerging [19, 11, 22] which apply occlusion
fusion based on the intersection of the umbrae of individual occluders.

In this paper we present a novel way of representing and computing the visibil-
ity from a viewcell. For that purpose, we introduce the notion of virtual occluders.
Given a scene and a viewcell, a virtual occluder is a view-dependent (simple) convex
object, which is guaranteed to be fully occluded from any given point within the view-
cell and which serves as an effective occluder from that viewcell. Virtual occluders
compactly represent the occlusion information for a given cell. Each virtual occluder
represents the aggregate occlusion of a cluster of occluders. The introduction of such
view-dependent virtual occluders enables one to apply an effective region-to-region or
cell-to-cell culling technique and to efficiently compute the PVS from a region or a
cell. Figure 1 depicts a virtual occluder that aggregates occlusion of four columns in
the Freedman Museum model. On the right, the scene is shown from above. The vir-



tual occluder is the vertical rectangle placed behind the furthest column. On the left,
a view is shown from inside the region for which this virtual occluder was computed.
The virtual occluder is completely occluded behind the columns (which are rendered
transparent, for the sake of demonstration). We present a technique that synthesizes
such virtual occluders by aggregating the occlusion of a set of individual occluders and
show its effectiveness. It should be mentioned that the term ”virtual occluders” was
independently used in [16] with a different meaning.

The rest of the paper is organized as follows: We give an overview of the method in
Section 2, as well as summarizing its main contributions. In Section 3 we describe the
algorithm for constructing the set of virtual occluders. The results and their analysis are
presented in Section 4, and we conclude in Section 5.

2 Overview

The virtual occluders are constructed in preprocessing. For simplicity in the discussion
we assume regular partitioning of the scene into axis-aligned box-shaped cells. How-
ever, this is not inherent to our algorithm, which may handle any partitioning of the
scene into cells of arbitrary non-convex shape. This algorithm is applied to a given
viewcell and constructs a set of virtual occluders that effectively represents the occlu-
sion from this cell. It yields a large, dense set of potential virtual occluders. From this
set, an effective small sorted subset is selected and stored for the on-line stage. Since
the virtual occluders are large, convex and few, the PVS of the associated viewcell can
be quickly constructed by applying a simple and effective culling mechanism similar to
[7, 18].

The PVS of a viewcell is constructed only once before the walkthrough enters the
cell, by culling the scene against the virtual occluders. The frame-rate of the walk-
through is not significantly interrupted by the visibility determination, since the cost of
constructing the viewcell’s PVS is amortized over the large number of frames during the
walk through the cell. Note that one of the advantages of our method is that it generates
large effective occluders and thus enables the use of a larger viewcell, which further
reduces the relative cost of computing the PVS. The main advantages of the presented
method can be summarized as follows:

Aggregate occlusion. Each virtual occluder encapsulates the combined contribu-
tion of a cluster of occluders. This results in the ability of culling larger portions of
the scene-graph using just a single virtual occluder. Moreover, a small set of virtual
occluders faithfully represents the occlusion from a viewcell.

Accuracy. The presented method for constructing virtual occluders is an object-
space continuous method. Their shape and location are not constrained by a space
partition of the scene (e.g., quadtree or kd-tree). The placement of the virtual occluders
adapts to the scene and not to an independent fixed subdivision. This leads to accuracy
and thus a stronger conservative visibility set.

Speed. Since the number of per-viewcell virtual occluders is small, the visibility
culling process is faster. The virtual occluders occlude more than the individual objects,
and are thus able to cull larger cells of the scene-graph. This results in a highly reduced
amount of computation at run-time for each viewcell.

Storage size. Given a viewcell and a small set of virtual occluders, the PVS can be
computed on-the-fly during the walkthrough. This avoids storing the PVS but rather a
small set of virtual occluders, which requires less space. This is vital since the potential
visibility sets of all viewcells of a complex scene tend to be too large for storage (see
Section 4).
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Fig. 2. The union of the umbrae of the individual objects is insignificant, while their aggregate
umbra is large and can be represented by a single virtual occluder.

There are various applications that can benefit from virtual occluders. All of them
exploit the fact that the cost of computing the conservative visibility set can be amor-
tized over several frames. Rendering the scene consists of three processes:

1. computing the viewcell virtual occluders;
2. computing the viewcell PVS;
3. rendering the PVS.

The first process is computed offline, while the other two online. We can consider
a rendering system, which is conceptually partitioned into a client and a server. The
server can compute the virtual occluders in a preprocess and store them in a spatial data
structure. During the walkthrough, the client uses the virtual occluders to compute the
PVS. The PVS must be readily available for the real-time rendering of the scene. This
requires the system to precompute the PVS of nearby viewcells before the walkthrough
enters those viewcells. As mentioned in the introduction, a remote walkthrough appli-
cation necessarily requires the computation of a from-region PVS to avoid the latency
problem [8].

3 Constructing the Virtual Occluders

In this section we show how to construct a set of virtual occluders that represents the
aggregate occlusion from a given viewcell. We first describe the algorithm in 2D and
then extend it to 3D in the next subsection. The algorithm description is visualized with
a set of illustrations: Figure 2 shows the viewcell in yellow and a set of occluders. The
umbrae of the individual occluders is illustrated in 2 (a), showing that the occlusion of
the individual objects is insignificant. Nevertheless, the aggregate occlusion of these
objects is much larger, as can be seen in 2 (b). To construct virtual occluders that
effectively capture the aggregate occlusion we use the following algorithm: (1) select a
set of seed objects, (2) build a set of virtual occluders from a given seed and the cluster
of objects around this seed and (3) decimate the initial dense set of virtual occluders
to a cost effective smaller set. The exact definitions and details as applied for a given
viewcell are elaborated below.



The set of seed objects is defined according to the solid-angle criterion [15] defined
from the viewcell center. Objects with a large solid-angle are likely to be effective
occluders from the given viewcell and thus included in a cluster of occluders that builds
up larger occlusion. The seed object in Figure 3 is colored in light blue. It should be
noted that the algorithm is not sensitive to the accuracy of the definition of the set of
seed objects. However, the more seeds used, the better the set of virtual occluders is in
terms of its effectiveness (less conservative).

For a given seed object we now construct an aggregate umbra starting from its own
umbra and augmenting it with the occlusion of its surrounding objects. First, the two
supporting lines that connect the viewcell and object extents build the initial umbra.
An initial virtual occluder is placed behind the object in its umbra (see Figure 3 (a)).
Now, let us first assume that during this process one of the supporting lines is defined
as the active supporting line while the other remains static (the active supporting line is
drawn in purple). If the active line intersects an object, then this object is a candidate
to augment the umbra. If the candidate object intersects the umbra of the seed object,
then it augments the umbra and the active line shifts to the extent of the inserted object
(see Figure 3 (b)). By iteratively adding more and more objects the umbra extends, and
gets larger and larger. There are cases where a candidate object does not intersect the
current umbra, but can still augment it. To treat these cases we define and maintain the
active separating line(polyline) (colored in red).

Initially, the active separating line is defined between the seed object and the view-
cell (in the standard way [9]). Then objects which intersect the active separating line
redefine it to include the new objects and the separating line becomes a polyline. In
Figure 3 (b) we can see that object 2, which intersects the active supporting line, but
not the active separating line, cannot contribute its occlusion to the augmented umbra
before the contribution of object 3 is considered. As illustrated in Figure 3 (b), object 3
intersects the active separating line and thus redefines it to the polyline shown in Figure
3 (c). Then, object 2 intersects both active lines, augments the aggregate umbra and ex-
tends the virtual occluder further (3 (d)). Formally, let us define the evolving aggregate
umbra U , the active supporting line P , and the active separating polyline Q. Given an
object B:

1. If B intersects U then B updates U , Q and P , and a new virtual occluder is
placed behind B.

2. If B intersects only Q then Q is updated to include B.
3. If B intersects bothQ and P thenB updates U , Q and P , and the furthest virtual

occluder is extended to the new location of P .

Once no more objects intersect the active lines, the static line on the other side is
activated, the process is repeated for the other side aiming to further augment the umbra
by adding objects from the other side of the seed object. In our implementation both
left and right separating lines are maintained active and the insertion of objects can be
on either side of the umbra. Thus, the initial active supporting and separating lines are
as shown in Figure 4. Note that in case 2 above, B has to be above the opposite active
polyline.

Since a virtual occluder is placed behind all the individual occluders that make it
up, as it grows bigger it also grows further away from the viewcell. For this reason we
periodically ’dump’ some of the intermediate virtual occluders into the dense set.

This aggregate umbra algorithm bears some conceptual similarity to algorithms that
compute shadow volumes from an area light source [4, 5], or even to discontinuity
meshing methods [10, 6]. However, here we have two important advantages. First,
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Fig. 3. Growing the virtual occluders by intersecting objects with the active separating and sup-
porting lines. (see color plates)

the aggregate umbra does not necessarily have to be accurate, but conservative, and can
thus be calculated significantly faster than area shadow algorithms. The other advantage
lies in the effectiveness of the aggregation. While shadow algorithms detect additional
objects that intersect an umbra and expand it, they don’t make full use of the separating
lines. See the example in Figure 5, even if the polygons are processed in front-to-back
order, none of the shadow methods successfully merge the umbrae into one, in contrast
to the method presented here.

After a dense set of virtual occluders is computed, it is sufficient to select only a
small subset of them for the on-line stage. This saves the per-cell storage space and
accelerates the process of computing the cell visibility set. The idea is that the subset
can represent the occlusion faithfully, since there is a large amount of redundancy in the
dense set. In practice, we have found that just less than ten virtual occluders per cell are
sufficient to represent the occlusion effectively.

1

3

2

4

S

Fig. 4. The active lines are processed on both
sides simultaneously.

Fig. 5. Current shadow algorithms do
not necessarily aggregate the occlusion.

The greedy algorithm that is used to select this subset is described in Figure 6. Fig-
ure 9 shows a subset of virtual occluders selected by the algorithm. The key observation
behind this algorithm is that the addition of a virtual occluder to the subset is a tradeoff



- the additional virtual occluder improves the PVS by occluding some part of the scene,
but the down-side is that the process of computing the PVS takes longer with a bigger
set of virtual occluders. Therefore the algorithm selects the most effective occluders one
by one, until the addition of another occluder is not cost effective since the occlusion
contributed by it is not significant enough to justify the enlargement of the subset. A
beneficiary consequence of this algorithm is that the final subset is sorted, i.e. the most
effective occluders appear first. This will accelerate the PVS construction process. This
algorithm of course is non- optimal, but practically, there is no significant difference
since conservative occlusion is not sensitive to small details.

for each virtual occluder O in the dense set D do
initialize weight of O

to the size of the area it occludes.
endfor
repeat

let V be the virtual occluder with largest weight in D

if V contributes effectively to occlusion
then

add it to the final sorted set
remove it from D

for every occluder O in D do
reduce the weight of O by the size of the
area occluded both by O and V

endfor
else

output the final set, and exit
endif

endrepeat

Fig. 6. Algorithm for selecting a sorted effective subset from a dense set of virtual occluders.

3.1 Treating 3D Cases Using a 2.5D Visibility Solution

Above we have described the algorithm in 2D. Extending the algorithm to handle arbi-
trary 3D scenes entails considerable increase in its complexity and running time. Fortu-
nately, in practice, full 3D visibility culling is not always necessary. When dealing with
typical (outdoor and indoor) walkthroughs, 2.5D visibility culling is almost as effective
but much faster. Moreover, in these cases a simpler implementation of the technique
significantly accelerates the process, while losing insignificant conservativeness.

The 2.5D visibility problem is reduced to a set of 2D problems by taking numerous
slices of the scene at different heights. Farther buildings appear lower from the viewcell,
and therefore the slices can not be horizontal in the original scene. To perform the
slicing in a way that takes perspective into account, we lower each vertex in the scene
proportionally to its distance from the viewcell (in this case, the distance to a point in
the viewcell that is farthest from it). After this adjustment, horizontal slices of the scene
are representative in terms of occlusion, i.e. if an object is occluded in a 2D slice of a
given height, it is guaranteed to be occluded in 3D up to this height.

For each slice we run the 2D algorithm that constructs virtual occluders. These vir-
tual occluders are extended from the ground up to the height of the slice. This yields
a dense set of virtual occluders of different heights. The degree to which this repre-
sentation is conservative, depends on the discretization resolution. This approach is
conservative, because in 2.5D, if a vertical object (e.g. virtual occluder) is completely
occluded by other objects at a given height, it is guaranteed to be occluded by them at
all smaller heights as well.



# slices % of occlusion
5 97.27
4 96.91
3 96.21
2 94.52
1 72.07

Fig. 7. The occlusion as a function of the num-
ber of height slices.
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The discretization does not necessarily lead to a loss of precision. In practice it is
enough to construct virtual occluders at only a small number of “interesting” heights.
There is a tradeoff between the precision and the processing time. As a heuristic strat-
egy, a height-histogram of the scene is quantized and analyzed to select an appropriate
number of heights for slicing the scene. The histogram of heights is constructed by con-
sidering the perspective-adjusted heights of the scene, as seen from the cell. In practice,
five or less slices provide sufficiently good results, as shown in Section 4. In should be
emphasized that the virtual occluders are conservative by nature and the effectiveness
of the method is not sensitive to small details of the occluders.

4 Results

We have implemented the described algorithms in C-language using the OpenGL li-
braries. The tests described below were carried out on an SGI InfiniteReality, with a
196Mhz R10000 processor. We have tested the method on two highly complex scenes.
One is a model of London, accurately depicting an area of 160 sq. kilometers (some
parts are shown in Figures 9 and 12). The model was created from detailed maps pro-
vided by Ordnance Survey, and consists of over 250K objects having more than 4M
vertices. The other model is the Freedman virtual museum, which spans an area of ap-
proximately 50,000 sq. feet, and consists of about a thousand objects having altogether
85K vertices (see Figure 10).

Figure 8 shows how the aggregate umbra of the virtual occluders improves the per-
formance compared to an occlusion culling based on individual objects, for three dif-
ferent cell sizes. Each line shows the percent of occlusion along a long path around the
city. We see that as the viewcells get larger the effectiveness of the individual occlud-
ers sharply decreases, compared to the effectiveness of using virtual occluders. We see
that for large viewcells the occlusion of individual buildings is on average less than two
percent of the scene, while virtual occluders occlude more than 85%. For smaller cells
the occlusion by virtual occluders is on average more than 98%. An example of the
effectiveness of virtual occluders can be seen in Figure 9. Note that the vast majority
of the occluded objects are culled by the eight virtual occluders, while only an insignif-
icant fraction of the scene can be culled by individual objects. Figure 11 shows a view
of London with a virtual occluder (colored in red) with respect to a viewcell (marked



in light green). The buildings that are occluded by this virtual occluder are colored in
blue.

Fig. 9. A top view of central London. Virtual occluders (in red) are placed around the viewcell
(red square). The blue buildings are those occluded by the virtual occluders and the green ones
are those occluded by individual buildings. Only a small set of buildings remains potentially
visible (colored in black) after using just eight virtual occluders. (see color plates)

The Museum model is an example of a sparse model, where less occlusion is present
from any given region. In our tests, we have found that no object occludes other objects
in the scene single-handedly. Nevertheless, more than 50% of the scene are usually
found occluded, when virtual occluders are used. In this case, the virtual occluders
faithfully represent the little occlusion present, despite the sparse nature of the scene
and the ineffectiveness of its individual objects.

Table 1 shows the effectiveness of a small set of virtual occluders in terms of their
occlusion. We can see that using just five virtual occluders already provides an effective
occlusion of 95% of the London model. The use of more than ten virtual occluders
does not contribute much to the occlusion. This means that in terms of per-viewcell
storage space the virtual occluders are by far more economical than naive storage of
the viewcell PVS list. A virtual occluder is a vertical quadrilateral, represented by
opposite corners, which can be represented by only five values (the 2D endpoints and its
height). These coordinate values can be quantized to one byte each, since the effective
occlusion of the virtual occluder is not sensitive to its fine sizes. Thus, storing ten virtual
occluders per viewcell requires just fifty bytes. A different way to deal with the problem
of PVS storage was presented in [21], where a sophisticated compression scheme was
described.

Figure 7 shows how the slicing resolution affects the conservativeness of the virtual
occluders. The table shows the size of the PVS as a function of the number of slices.
We see that the size of the PVS is improved greatly by taking only two slices. Using
more than five slices does not yield a significant reduction in the size of the PVS.

For an average viewcell, it takes about a minute to produce the dense set of virtual



# VO % of occ. � PVS (#vertices)
1 43.73 43.73 2607241
2 72.05 28.31 1295049
3 86.93 14.88 605592
4 93.92 6.98 281713
5 95.91 1.99 189508
6 96.52 0.61 161244
7 96.77 0.25 149660
8 96.95 0.18 141320

# VO % of occ. � PVS (#vertices)
1 18.64 18.64 69424
2 34.94 16.30 55515
3 46.16 11.22 45941
4 51.95 5.79 41001
5 56.62 4.67 37016
6 60.92 4.30 33346
7 62.14 1.22 32305
8 63.22 1.08 31384

Table 1. The magnitude of occlusion as a function of the number of virtual occluders saved for
real-time use. A small number of virtual occluders represent most of the occlusion. The upper
table shows results for the London model, and the lower for the Freedman Museum model.

occluders and their decimation into an effective small set. Once the virtual occluders
are given, the time spent on the computation of the PVS is negligible provided the scene
is traversed hierarchically in a standard top-down fashion (the PVS is rapidly computed
by treating the virtual occluders as strong occluders [7]). In fact, virtual occluders can
be used from any point in the viewcell as effective from-point occluders. By performing
from-point visibility culling using the precomputed virtual occluders, a refined visibility
set can be obtained in each frame.

5 Conclusion

We have presented the new concept of virtual occluders as a means for representing
the aggregate occlusion of groups of objects. They can have forms other than the one
presented, but the idea is that they are an effective intermediate representation of the
occlusion from a cell. One of their important features is that they are ordered in terms
of importance. This provides an efficient culling mechanism since the visibility test of
each object is applied first with the most effective occluders. Only those few objects
that are not culled by the first most effective virtual occluders are tested against the rest
of the occluders down the ordered list.

It is important to note that in the London model the buildings are fairly simple
and consist of a relatively small number of polygons. This means that level-of-detail
techniques (LOD) cannot help much in rendering such a huge model. Thus, occlu-
sion culling is a vital tool for such walkthrough application. In other cases a scene can
consist of some very detailed geometric models. This would require incorporating dy-
namic LOD techniques, image-based rendering and modeling, and other acceleration



techniques to handle rendering the potential visibility sets.
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Fig. 10. A ray-traced view over the Freedman
virtual museum with the ceiling removed. The
yellow square in the bottom is the viewcell and
the red and white rectangle is one of the virtual
occluders.

Fig. 11. A viewcell and one of the correspond-
ing virtual occluders (the long red rectangle
piercing through the buildings). The buildings
that are occluded by this virtual occluder are
colored in blue. (see color plates)

Fig. 12. A view over a part of the London model.
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Abstract. This paper describes a novel from-region visibility algorithm, the unique
properties of which allow conducting remote walkthroughs in very large virtual
environments, without preprocessing and storing prohibitive amounts of visibility
information. The algorithm retains its speed and accuracy even when applied to
large viewcells. This allows computing from-region visibility on-line, thus elim-
inating the need for visibility preprocessing. The algorithm utilizes a geomet-
ric transform, representing visibility in a two-dimensional space, thedual ray
space. Standard rendering hardware is then used for rapidly performing visibil-
ity computation. The algorithm is robust and easy to implement, and can trade
off between accuracy and speed. We report results from extensive experiments
that were conducted on a virtual environment that accurately depicts 160 square
kilometers of the city of London.

1 Introduction

In a remote walkthrough scenario, a large three-dimensional virtual environment is
stored on a server. The client performs an interactive walkthrough, via a remote net-
work connection, with no a priori information regarding the environment. The client is
assumed to possess the computational resources equivalent to those of a personal work-
station, not being able to render a significant portion of the environment in real time,
nor even fit it into its memory.

This scenario brings about the need forselective transmission, the crux of which is
that the server monitors the client’s (virtual) location during the walkthrough, and trans-
mits the relevant portions of the scene to the client. A selective transmission scheme
must carefully balance between the necessity of not causing errors or visual artifacts on
the client’s side, and the desirability of real-time frame rates.

To keep the client’s frame-rate high, the server has to ensure that the set of objects
displayed by the client is as close to the set of visible objects as possible. Unfortunately,
the ideal situation in which the client always renders only the visible objects is com-
putationally infeasible. However,conservativevisibility algorithms can be employed,
which ensure that the client renders all the visible objects, as well as some occluded
ones. Conservative visibility algorithms that perform well in practice have been the
subject of intensive study for the past decade.
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Fig. 1. The results of the algorithm for a viewcell of size 50x50x2 meters that partly lies on
London’s Oxford street. The model is shown on the left and the results are visualized on the
right. The algorithm has detected that the whole length of Oxford street is visible (blue) from
the viewcell (green), and was able to mark the immediately surrounding areas as occluded (red).
The tall green wireframe box is drawn in order to mark the viewcell’s location. Results for this
viewcell are shown in Figure 6(a) as well.

From-point visibility algorithms [5, 12, 14, 29] are not suitable for remote walk-
throughs, since they necessitate transmitting visibility changes every frame, giving rise
to unacceptable communication lags, no matter how fast the visibility is computed. To
avoid the problem of lag, from-region visibility [4, 8, 15, 22, 24, 28] can be used. The
idea behind from-region visibility is to partition the space into a grid of viewcells. For
each viewcell, the set of objects visible from at least one point inside the viewcell is con-
servatively estimated, yielding aPotentially Visible Set(PVS) that is associated with the
viewcell.

While the client is in a certain viewcell, the server transmits the PVS of the adja-
cent viewcells. This alleviates lag, since the client does not have to wait every frame
for updates from the server. Rather, the set of objects displayed by the client changes
only when a viewcell boundary is crossed. By the time the client leaves a viewcell, the
PVS of the next viewcell has already been transmitted, and the walkthrough proceeds
smoothly.

This approach does not come without cost. Since the PVS of each viewcell contains
information about the visibility of the whole scene (from that viewcell), and there is a
large number of viewcells, the overall amount of visibility information that has to be
stored on the server is enormous. Although compression schemes have been developed
specifically to tackle this problem [11, 26], it is still very relevant and prohibitive for
large scenes such as urban models.

The space problem is exacerbated by the fact that previous approaches to from-
region visibility computation are efficient primarily when dealing with relatively small
viewcells (with the exception of [9, 24, 25], which are dedicated to in-doors walk-
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throughs). This implies that large scenes have to be partitioned into tens of thousands
of viewcells, the Potentially Visible Sets of which have to be computed and stored.

Another bothersome aspect concerning small viewcells is the fact that the time it
takes the client to cross one viewcell is short. If during that time the server cannot com-
plete the transmission of the visibility change required for proceeding into an adjacent
viewcell, visually disturbing errors occur. This is essentially the same problem of lag
that occurs if the server uses from-point visibility computation. Note that the difference
in visibility from two adjacent viewcells can be very significant, even if they are small.

In this paper, we introduce a different approach to computing from-region visibility,
which eliminates the need for preprocessing and storing prohibitive amounts of visibil-
ity information, and does not introduce lag. The speed and accuracy of our from-region
visibility algorithm are retained for very large viewcells. This allows utilizing from-
region visibility computation on-line. While the client traverses one (large) viewcell,
the server computes the visibility information for adjacent viewcells. The speed of the
algorithm allows computing and transmitting this visibility information before the client
reaches the next viewcell, and its accuracy (see Figure 1) ensures that the PVS is small
enough to be displayed by the client in real time.

The next section surveys previous approaches to from-region visibility computation,
and outlines the specific properties of our approach. Section 3 gives an overview of our
algorithm, which is then developed in Sections 4 and 5. Implementation decisions and
experimental results are reported in Section 6, and we conclude in Section 7.

2 From-region visibility

Detecting the objects that are visible from at least one point in a three-dimensional
viewcell is inherently a non-linear four-dimensional problem [7, 23]. Exact solutions
to the from-region visibility determination problem are considered impractical. In fact,
no such solutions have explicitly appeared in computer graphics literature, with the
exception of [7, 23]. Instead, researchers have concentrated on providing practical con-
servative algorithms that overestimate the set of visible objects.

For general scenes, conservative methods were introduced that take into account
only the occlusion of individual large convex occluders [4, 21]. It was shown that such
methods are only effective if the viewcells are smaller than the occluders [18]. For
large viewcells, occlusion may arise out of the combined contribution of several objects.
Often, a “cluster” of small objects occludes a large portion of the scene, while the
individual occlusion of each object is insignificant.

New techniques have recently emerged that attempt to perform occlusion fusion,
that is, capture occlusion caused by groups of objects [8, 15, 22, 28]. Durand et al. [8]
perform from-region visibility computation by placing projection planes behind oc-
cluders, and projecting objects onto these planes. Koltun et al. [15] “slice” the scene
and aggregate occlusion inside each slice to form large virtual occluders. Schaufler et
al. [22] discretize the scene into a hierarchy of voxels and determine occlusion by test-
ing the voxels against the umbrae of the occluders. Wonka et al. [28] prove that after
the occluders are appropriately “shrunk”, sampling the visibility at discrete locations
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on the boundary of the viewcell provides a conservative estimate of the visibility from
the viewcell. Further discussion on these recent techniques can be found in [3].

The from-region visibility algorithm presented in this paper utilizes a geometric
transform that maps rays in object-space to points in image-space. This alternative rep-
resentation of visibility allows the problem to be conservatively discretized and solved
rapidly, using standard rendering hardware. The resolution of the discretization can be
adjusted to trade off between accuracy and speed. The algorithm has been successfully
applied to viewcells that are much larger than individual occluders (see Figure 6(b)).
Its accuracy and speed allow computing from-region visibility on-line, eliminating the
need for visibility preprocessing. It thus provides inherent support for dynamic removal
and addition of objects.

3 Overview

The algorithm processes a model that is represented by a hierarchical space subdivision;
we use a kd-tree. Each node of this space subdivision is associated with an axis-aligned
bounding box, and with the objects that are (perhaps partially) contained in this box.
The bounding box associated with a node is completely contained in the bounding box
associated with the node’s parent.

For a given viewcell, our algorithm hierarchically traverses this subdivision in a top-
down fashion. For each subdivision node, the algorithm determines whether the bound-
ing box of the node is visible from the viewcell. When an occluded node is reached,
the recursion terminates, since the children of that node are guaranteed to be occluded.
This early termination strategy contributes to the speed of the algorithm, by allowing
large portions of the scene to be culled after just one visibility determination query.

The cell-to-cell visibility determination algorithm is the core of the system. Denote
the axis-parallel boxes corresponding to the viewcell and to some subdivision node by
A andB, respectively. Denote a collection of occluding objects byS. The algorithm
determines whetherA andB are mutually visible amongS. A andB are said to be
mutually visible if there exists a line segment with one end-point inA and another inB
that is disjoint from all objects ofS. The cell-to-cell visibility determination algorithm
operates by first reducing the problem to planar visibility determination as described in
Section 4, and then solving this planar problem as described in Section 5.

Simplifying assumptions.There is no known rapid from-region visibility algorithm
that is also exact. This does not seem likely to change due to the four-dimensional nature
of the problem, and the complex geometric structure of visibility events [7]. Practical
conservative algorithms [4, 8, 15, 22, 28] necessarily discretize or simplify the problem
in some way. One common strategy, which is adopted here as well, is to assume that the
input scene (more accurately, the set of occluders) is 2.5D [4, 15, 28].

Clearly, one can construct a scene in which this assumption is too restrictive for
any significant occlusion to be detected. Such a scene may be, for example, a randomly
generated “soup” of long and slim triangles. We consider such scenes to be of relatively
little interest to the practical uses of the presented algorithm. A common type of input
scenes for walkthrough systems is urban environments, where the most important oc-
cluders are buildings, large parts of which are 2.5D due to engineering constraints. In
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Fig. 2. The construction involved in the reduction to a planar problem. The shaftAB is shown
filled.

architectural scenes, much of the occlusion is also caused by 2.5D objects. Even if a vir-
tual environment is not specifically designed to model a city, a building, or a landscape,
it is rare to come across a commercial virtual environment that is not largely 2.5D.

Moreover, “good” occluders can be synthesized from arbitrary input objects. Syn-
thesis of large convex occluders was studied by Andujar et al. [1], and similar tech-
niques can be applied to synthesize 2.5D occluders.

4 Reduction to a planar problem

The algorithm has to decide whether two axis-parallel boxesA andB are mutually vis-
ible. We now show how this problem can be reduced toplanarvisibility determination.
We start with a simple observation. Denote the edges bounding the upper face ofA (B)
byAi (respectively,Bi), for 1 � i � 4.

Observation 1 A andB are mutually visible with respect toS if and only ifAi andBj
are mutually visible with respect toS, for some1 � i; j � 4. In other words,A andB
are mutually visible if and only if their upper rims are.

Proof. It is obvious thatA andB are visible if their upper rims are. We thus concentrate
on the “only if” part, stating that ifA andB are mutually visible then their upper rims
also are.A andB are mutually visible if and only if there is a visibility segments

between them.s is disjoint fromS and has one end-point in the interior ofA and
another in the interior ofB. Consider the semi-infinite vertical “wall” defined as the
union of upward vertical rays originating froms. Since the occluders are 2.5D and are
disjoint froms, they are also disjoint from this wall. Also, the wall must contain at least
one point belonging to the upper rim ofA and another point belonging to the upper rim
of B. Since it is convex, it also contains the segment connecting these two points. Thus,
there exists a segment connecting the upper rims ofA andB that is disjoint fromS. 2

We now define the termshaft; the definition is illustrated in Figure 2. LetL andR
be the two vertical planes that supportA andB. LetFA andFB be two parallel vertical
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planes that separateA andB, such thatFA contains a face ofA andFB contains a face
of B. LetT be a plane that contains two parallel horizontal edges, one ofA and one of
B, and supportsA andB from above. (In general, there are two such planes.) LetV be
the plane that supportsA andB from below. The shaftAB is the area bounded byL,R,
FA, FB , T , andV . (Notice that our definition of a shaft is different from that in [13].)

Observation 1 implies that there exists a visibility ray betweenA andB inside the
shaftAB only if there exists a visibility ray on the “ceiling” ofAB. More precisely, let
a1 denote the pointT \ FA \ L, and leta2 denote the pointT \ FA \ R. Similarly,
T \ FB \ L is denoted byb1, andT \ FB \ R is denoted byb2. Also, denote byST
the collection of intersections of the polygons ofS with T , which is a collection of
segments onT . A andB are mutually visible amongS only if the segments(a1; a2)
and(b1; b2), both lying on the planeT , are mutually visible amongST . We have thus
reduced the problem to planar visibility determination onT .

5 Planar visibility determination

Given two segmentss1 ands2 in the plane, and a collection of occluding segmentsO,
we wish to determine whethers2 is visible froms1. We first provide a simple analytic
algorithm for this problem, which is then converted into a rapid hardware-assisted one.

5.1 Exact analytic algorithm

We define a bounded two-dimensional space, thedual ray space, such that every ray
originating ons1 and intersectings2 corresponds to a point in this space. Our algorithm
“marks” all points in the ray space that represent rays that pass through occluding seg-
ments. Visibility is then detected by checking whether there is at least one point that
has not been “marked”.

More precisely, parameterizes1 ands2 asfs1(t)j 0 � t � 1g andfs2(t)j 0 � t � 1g,
respectively. LetRS be the unit squaref(x; y)j 0 � x; y � 1g, such that a point(x; y)
in RS corresponds to the ray originating ats1(x) and passing throughs2(y).

Define a mappingT :R2!RS that maps each pointp2R2 to the collection of points
inRS that correspond to rays passing throughp. For anyp2R2 , T (p) is a line segment
in RS . For a segmentv2O, parameterized asfv(t)j 0 � t � 1g, T (v) is defined to be
the continuous collection of segmentsfT (v(t))j 0 � t � 1g. This collection is bounded
by the segmentsT (v(0)) andT (v(1)) that correspond to the end-points ofv. In general,
it forms either a trapeze (Figure 3(a)) or a double-triangle (Figure 3(b)), depending on
whether the line containingv intersects the interior ofs1 or not.

This implies a simple exact algorithm for determining whethers2 is visible from
s1: Map each segmentv2O toRS and compute the union of the resulting trapezes and
double-triangles (i.e.

S
v2O T (v)). This computation can be performed in worst-case

optimalO(n2) time without employing complex data structures [6]. Ifs1 ands2 are
mutually visible, there is a pointpo 2 RS that is not contained in this union. The point
po corresponds to a visibility ray (see Figures 3(c) and 3(d)).

The dual ray space mappingT bears similarities to other duality transforms, such as
the standard duality transform in computational geometry [6] and the Hough transform,
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Fig. 3. Simple scenes (top) and their dual ray space (bottom). In this figure, each trapeze in the
ray space has the color of the segment it corresponds to. (a) and (b) each show an occluding
segment.s2 is occluded froms1 in (c) and is visible in (d); the black point in the ray space of (d)
corresponds to the dashed visibility ray.

which is used for line detection in image analysis [16]. However, the dual ray space
is a bounded region (as opposed to the infinite dual planes of the above-mentioned
transforms) that can be efficiently discretized. This is a crucial advantage that served
as the main motivation for the current definition of the dual ray space. In this sense,
the dual ray space is similar to the lumigraph [10] and the light field [17]. (Notice that
Gortler et al. [10] also use the term “ray space”.) In the context of related work in
computational geometry, our exact algorithm corresponds to local computation of one
face of thevisibility complex[20]. The visibility complex has been previously applied
to ray-tracing [2] and radiosity [19].

5.2 Hardware-accelerated algorithm

We wish to determine whether
S
v2O T (v) covers the unit squareRS . This can be ac-

complished conservatively by discretizingRS into a bitmap and rendering allT (v)
onto this bitmap using graphics hardware. AllT (v) are drawn in white, without z-
buffering or shading, onto an initially black background. If a black pixel remains, the
segmentss1 ands2 are reported to be mutually visible. This algorithm avoids the com-
plex analytic computation of the union and alleviates robustness problems common in
geometric algorithms.

The default behavior of OpenGL is to color a pixel if itscenteris inside a drawn
polygon. This may cause inaccuracy, since our algorithm is conservative provided that
only the pixels that arecompletelycovered by

S
v2O T (v) are colored white. This be-

havior is ensured by “shrinking” the double-triangles and trapezes prior to rendering.
Their edges are moved inward by

p
2a, wherea is half the pixel size (see Figure 4).

The center of a pixel is insideT (v) after shrinking, only if the pixel was completely
covered by it prior to shrinking [27].
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Fig. 4. The green pixels are properly contained inT (v) (shown dashed), and their centers are
contained in the “shrunk”T (v) (shown solid). The yellow pixels are only partially covered by
T (v), but their centers are contained inT (v); shrinking prevents them from being colored.

The process of checking whether there are any black pixels left after rendering is
accelerated using the OpenGL minmax operation, part of the OpenGL 1.2 standard.
The minmax operation allows a quick determination of the minimal (or maximal) pixel
color in the frame buffer. It can therefore be used for deciding whether the buffer is
fully white or contains a black pixel.

The image-space nature of the described algorithm allows it to be applied hierarchi-
cally, in a manner similar to [29]. We can use a low-resolution bitmap to representRS ,
and rapidly render allT (v) onto it. If the resulting bitmap is not fully white, a bitmap
of higher resolution is used to refine the test, yielding a less conservative PVS.

6 Results

The algorithms described in this paper were implemented, and tested on an IBM A20p
laptop with a 750Mhz Pentium III CPU and an ATI Rage Mobility graphics card. The
exact planar visibility algorithm (Section 5.1) was also implemented, for the sake of
comparison. Our test model accurately depicts 160 sq. km. of London. It was created
using data provided by Ordnance Survey, and comprises 1.7 million polygons.

One goal of our experiments was to determine an effective resolution for the dis-
cretization of the dual ray space. There is a clear trade-off involved. Higher resolution
yields a less conservative PVS, at the cost of computation speed. Another goal was de-
termining an effective viewcell size. Small viewcells induce lag, but prohibitively large
portions of the scene are visible from viewcells that are too large.

We have tested the algorithm with viewcells of sizes ranging from 50x50 meters to
300x300 meters, and with discretization resolutions ranging from 16x16 to 256x256.
All the viewcells were 2 meters high. The average time to compute the PVS is shown
in Table 1, for a sample of viewcell sizes and discretization resolutions. Table 1 also
shows the impact of the discretization resolution on the overestimation of the PVS. The
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Resolution Time (sec.) Overestimation (%)
Viewcell Size Viewcell Size

50x50100x100300x30050x50100x100300x300
16x16 0.4 0.5 1.8 0.391 0.518 1.192
32x32 0.6 0.7 2.7 0.335 0.436 0.901
64x64 0.9 1.1 4.1 0.185 0.240 0.533

128x128 2.1 2.5 7.8 0.012 0.026 0.106
256x256 6.6 7.9 24 0.001 0.005 0.019

Table 1. The effect of the discretization resolution on the speed and overestimation of the algo-
rithm.

overestimation is given by

PE � PC

PE
� 100%;

wherePE is the size of the occluded areas, as computed using the exact planar algo-
rithm, andPC is the size of the occluded areas, as computed using the conservative
planar algorithm. One of the advantages of this measure is its independence from the
depth complexity of the model.

Table 1 shows that the speed of the algorithm directly depends on the discretization
resolution. Hence, using better graphics hardware can further accelerate the visibility
computation. This indicates that we have made the from-region visibility determination
problem hardware intensive.

Based on our experiments, we have chosen to work with viewcells of size 100x100
meters and discretization resolution of 128x128. The PVS of a 100x100 viewcell in the
London model consists of on average 8K polygons (0.5% of the model). This means
that a client using a personal workstation can render the PVS in real time.

Before the walkthrough begins, the server computes and sends the PVS of the initial
viewcell and the eight viewcells adjacent to it. During the walkthrough, the server en-
sures that the client receives the PVS of a viewcell before reaching it. Since the server
does not know in advance which viewcell the client will enter next, this necessitates
computing and transmitting the PVS of up to five adjacent viewcells while the client
traverses a single viewcell, as shown in Figure 5. Assuming average walkthrough speed
of 6km/h, such computation takes 12.5 seconds on average (Table 1), which leaves 47
seconds for transmitting the five visibility changes to the client, considering the fact that
crossing a single 100x100 viewcell at this speed takes about one minute.

Even in the case of a slow network connection, this clearly shows that remote walk-
throughs can be conducted unhindered by network lag. The large size of the viewcells
gives the server enough time to compute and transmit the visibility information. The al-
gorithm’s speed allows performing visibility computation on-line. Finally, the accuracy
of the algorithm ensures that the PVS is small enough to be displayed by the client in
real time.
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A

Fig. 5.A client’s path in the model is shown in red. When the client commences the walkthrough
at viewcellA, it has the PVS ofA and the green viewcells. Upon the client’s arrival at viewcell
B, the server starts computing the PVS of the blue viewcells. Experiments show that the client
will receive the PVS of all the blue viewcells before reaching any one of them. In similar
fashion, the server ensures throughout the walkthrough that the client never reaches a viewcell
before its PVS is received by the client.

7 Conclusion

We have presented a novel from-region visibility algorithm. Its central idea is an alter-
native representation of visibility in thedual ray space, which allows utilizing standard
rendering hardware for visibility determination. The algorithm is simple to implement,
is robust due to working primarily in image-space, and can trade off between accuracy
and speed. It was shown to be efficient even when applied to large viewcells. This al-
lows remote walkthroughs to be conducted without preprocessing and storing a priori
visibility information.
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(a) A viewcell of size 50x50x2

(b) A viewcell of size 300x300x2

Fig. 6. Results of two experiments. Overviews of 25 square kilometers of the London model
are shown, with outlines of the buildings in white. The algorithm has classified the red areas as
occluded from the green viewcell, which is 50x50x2 meters large in (a), and 300x300x2 meters
large in (b). Discretization resolution of 128x128 was used.
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